Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(A=\frac{8-x}{x-3}=\frac{5-x+3}{x-3}=\frac{5-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)
Để A nguyên thì \(\frac{5}{x-3}\) nguyên
\(\Rightarrow5⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
Để A nhỏ nhất thì \(x-3\) bé nhất và bé hơn 0 nên \(x-3=-5\Leftrightarrow x=-2\) thỏa mãn để A nhỏ nhất
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1
Đặt \(A=\frac{1}{x-5}\)
Để A có GTNN thì \(x-5< 0\) và đạt GTLN
\(\Rightarrow\)\(x-5=-1\)
\(\Rightarrow\)\(x=4\)
\(\Rightarrow\)\(A=\frac{1}{x-5}=\frac{1}{4-5}=\frac{1}{-1}=-1\)
Vậy \(A_{min}=-1\) khi \(x=4\)
Để 1/x-5 là giá trị nhỏ nhất
=> 1/x-5=-1 => x-5=-1
mà x-5 =-1
=> x=4
:3
đk; x \(\ne\) 5
x = 4