Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2/x+7=x+7/32
<=> (x+7)^2=64
=> x+7=8 hoặc x+7=-8
=> x=-1 hoặc x=-15
b) - (x+5)^2= (x-2).(x+8)
<=> -(x+5)^2=x^2+8x-2x-16
<=> - (x+5)^2 =(x-4)^2
+> Không có giá trị x thỏa mãn
a. ĐK: x\(\ne\)-7
2.32=(x+7)2
<=> 64=x2+ 14x+ 49
<=>x2+ 14x- 15=0
<=>x2+ 15x- x- 15=0
<=>(x-1)(x+15)=0
\(\Leftrightarrow\hept{\begin{cases}x=1\\x=-15\end{cases}}\)
b, ĐK: x\(\ne\)-5;-8
(x-2)(x+8)=(x-5)(x+5)
<=>x2+ 6x- 16=x2- 25
<=>6x+9=0
\(\Leftrightarrow x=-\frac{3}{2}\)
a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)
b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)
c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí
Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)
=> Ko có x thỏa mãn
\(|x+\frac{1}{3}|=0\)
\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)
\(|x+\frac{3}{4}|=\frac{1}{2}\)
\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)
a, ( 152 +và 2/4 - 148 và 3/8 ) : 0,2 = x : 0,3
=> 33/8 : 1/5 = x : 3/10
=> x : 3/10 = 165/8
=> x = 99/10
b, ( 85 và 7/30 - 83 và 5/18 ) : 2 và 2/3 = 0,01x : 4
=> 88/45 : 8/3 = 0,01x : 4
=> 0,01x : 4 = 11/15
=> 0,01x = 44/15
=> x = 880/3
c, x - 1/ x + 5 = 6/7
=> 7( x - 1 ) = 6( x + 5 )
=> 7x - 7 = 6x + 30
=> 7x - 6x = 7 + 30
=> x = 37
d, x2/6 = 24/25
=> x2. 25 = 6 . 24
=> x2.25 = 144
=> x2 = 144/25
=> x = ( 12/5)2 hoặc x = ( -12/5)
g, x - 3/ x + 5 = 5/7
=> 7( x - 3 ) = 5 ( x + 5 )
=> 7x - 21 = 5x + 25
=> 7x - 5x = 21 + 25
=> 2x = 46
=> x = 23
Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)
=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
=>x=27;z=36;z=60
Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)
+)k=-2 => x=-4;y=-5
+)k=2 => x=4;y=5
Vậy x=-4;y=-5 hoặc x=4;y=5
Ta có : \(\frac{x+1}{5}=\frac{x+2}{6}\)
\(\Rightarrow\left(x+1\right)6=5\left(x+2\right)\)
\(\Leftrightarrow6x+6=5x+10\)
\(\Leftrightarrow6x-5x=10-6\)
\(\Rightarrow x=4\)
\(\frac{x+1}{2}\)= \(\frac{8}{x+1}\)
x + 1 . x + 1 = 2 . 8
x . 2 = 16
x = 16 : 2
x = 8
Câu b) tạm thời ko bít làm =.=
Bài 1 :
\(d)\) \(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2x\)
\(\Leftrightarrow\)\(\frac{4^5.4}{3^5.3}.\frac{6^5.6}{2^5.2}=2x\)
\(\Leftrightarrow\)\(\frac{4^6}{3^6}.\frac{6^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{2^6.3^6}{2^6}=2x\)
\(\Leftrightarrow\)\(\frac{2^{12}}{3^6}.\frac{3^6}{1}=2x\)
\(\Leftrightarrow\)\(2^{12}=2x\)
\(\Leftrightarrow\)\(x=\frac{2^{12}}{2}\)
\(\Leftrightarrow\)\(x=2^{11}\)
\(\Leftrightarrow\)\(x=2048\)
Vậy \(x=2048\)
Chúc bạn học tốt ~
Bài 1 :
\(a)\) Ta có :
\(4+\frac{x}{7+y}=\frac{4}{7}\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{4}{7}-4\)
\(\Leftrightarrow\)\(\frac{x}{7+y}=\frac{-24}{7}\)
\(\Leftrightarrow\)\(\frac{x}{-24}=\frac{7+y}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-24}=\frac{7+y}{7}=\frac{x+7+y}{-24+7}=\frac{22+7}{-17}=\frac{29}{-17}=\frac{-29}{17}\)
Do đó :
\(\frac{x}{-24}=\frac{-29}{17}\)\(\Rightarrow\)\(x=\frac{-29}{17}.\left(-24\right)=\frac{696}{17}\)
\(\frac{7+y}{7}=\frac{-29}{17}\)\(\Rightarrow\)\(y=\frac{-29}{17}.7-7=\frac{-322}{17}\)
Vậy \(x=\frac{696}{17}\) và \(y=\frac{-322}{17}\)
Chúc bạn học tốt ~
\(\frac{x-1}{x+5}=\frac{6}{7}\)
\(\left(x-1\right).7=\left(x+5\right).6\)
\(7x-7=6x+30\)
\(7x-6x=30+7\)
\(x=37\)
\(\frac{x-1}{x+5}=\frac{6}{7}\)
=>(x-1).7=(x+5).6
=>x.7-7=x.6+30
=>x.7-x.6=30+7
=>x=37