Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu này sai đề (x -3)3 -(x-3)(x2 +3x+9) +9(x+1)2 = 15
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)
\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)
\(12x^2-48-12x^2-36x-27\) \(=52\)
\(-36x-75=52\)
\(-36x=127\)
\(x=\frac{-127}{36}\)
\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)
\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)
\(4x^2+4x-1-4x^2+4+2x=5\)
\(6x+3=5\)
\(6x=2\)
\(x=3\)
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)
\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)
\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)
\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)
\(x^3-2-x^3-3x^2+9x+27=15\)
\(-3x^2+9x+25=15\)
\(-3x^2+9x+10=0\)
\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)
\(x=\frac{9+\sqrt{201}}{6}\)
các câu còn lại tương tự
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{10}{24}\)
Vậy x = \(\dfrac{-10}{24}\)
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
a) \(\left(x+3\right)^2-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-2x^2=54\)
=> x2 + 6x + 9 - x(9x2 + 6x + 1) + (2x)3 + 13 - 2x2 = 54
=> x2 + 6x + 9 - 9x3 - 6x2 - x + 8x3 + 1 - 2x2 = 54
=> (-9x3 + 8x3) + (x2 - 6x2 - 2x2) + (6x - x) + (9 + 1) = 54
=> -x3 - 7x2 + 5x + 10 = 54
=> -(x3 + 7x2 - 5x - 10) = 54
=> phương trình vô nghiệm
b) (x + 3)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 + 3x = -33
=> x3 + 9x2 + 27x + 27 - (x3 - 33) + 6(x2 + 2x + 1) + 3x = -33
=> x3 + 9x2 + 27x + 27 - x3 + 27 + 6x2 + 12x + 6 + 3x = -33
=> (x3 - x3) + (9x2 + 6x2) + (27x + 12x + 3x) + (27 + 27 + 6) = -33
=> 15x2 + 42x + 60 = -33
=> 15x2 + 42x + 60 + 33 = 0
=> 15x2 + 42x + 93 = 0
=> 3(5x2 + 14x + 31) = 0
=> 5x2 + 14x + 31 = 0
=> không tìm được x
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)
\(2x+8=15\)
\(2x=7\)
\(x=\frac{7}{2}\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
\(=>x^3+6x^2+12x+8-x^3+27+6x^2+12x+6=15\)
\(=>12x^2+24x+41-15=0\)
\(=>12x^2+24x+26=0\)
\(=>12\left(x^2+2x+1\right)+14=0\)
\(=>12\left(x+1\right)^2+14=0\)
\(=>2[6\left(x+1\right)^2+7]=0\)
\(=>6\left(x+1\right)^2+7=0\)
Mà \(\left(x+1\right)^2\ge0\)nên \(6\left(x+1\right)^2+7>0\)
Vậy ko có giá trị x nào thỏa mãn đề bài