Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>x^3+6x^2+12x+8-x^3+27+6x^2+12x+6=15\)
\(=>12x^2+24x+41-15=0\)
\(=>12x^2+24x+26=0\)
\(=>12\left(x^2+2x+1\right)+14=0\)
\(=>12\left(x+1\right)^2+14=0\)
\(=>2[6\left(x+1\right)^2+7]=0\)
\(=>6\left(x+1\right)^2+7=0\)
Mà \(\left(x+1\right)^2\ge0\)nên \(6\left(x+1\right)^2+7>0\)
Vậy ko có giá trị x nào thỏa mãn đề bài
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(x^3-2x^2+4x+2x^2-4x+8-x^3+2x=15\)
\(2x+8=15\)
\(2x=7\)
\(x=\frac{7}{2}\)
\(\Leftrightarrow x^3-3x^2+3x-1+8-x^3+3x^2+6x=17\)
\(\Leftrightarrow9x+7=17\)
\(\Leftrightarrow9x=10\)
\(\Leftrightarrow x=\frac{10}{9}\)
a) \(\left(x+2\right)^2-9=0\)
\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)
\(=>\left(x-1\right).\left(x+5\right)=0\)
\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)
Vậy x= 1 hoặc x= -5
b) \(x^2-2x+1=25\)
\(=>x^2-2.x.x+1^2=25\)
\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)
\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)
\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)
Vậy x= 6 hoặc x= -4
c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)
\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)
\(=>4x\left(x-1\right)-4x^2+25-1=0\)
\(=>4x\left(x-1\right)-4x^2+24=0\)
\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)
..................... tắc ròi -.-"
d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)
\(=>x^3+27-x^3-3x=15\)
\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)
Vì \(3>0=>4-x=0=>x=4\)
Vậy x= 4
e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)
\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)
\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)
\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)
\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)
Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'
3(x + 1)2 - 3x(x + 2) = 1
<=> 3x2 + 6x + 3 - 3x2 - 6x = 1
<=> 3 = 1 (vô lí)
Vậy phương trình vô nghiệm.
(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2
<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 = 2
<=> 3x - 40 = 2
<=> 3x = 42
<=> x = 14
Vậy S = { 14 }.
(x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15
<=> x3 + 8 - x3 - 2x = 15
<=> - 2x + 8 = 15
<=> - 2x = 7
<=> x = - 7/2
Vậy S = { - 7/2 }.
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
1) \(x^2-6x+9=\left(5-3x\right)^2\)
\(\left(x-3\right)^2=\left(5-3x\right)^2\)
\(\Rightarrow x-3=5-3x\)
\(\Rightarrow x+3x=5+3\)
\(\Rightarrow4x=8\)
\(\Rightarrow x=2\)
\(3x\left(2x-3\right)=5\left(3-2x\right)\)
\(3x\left(2x-3\right)+5\left(2x-3\right)=0\)
\(\left(3x+5\right)\left(2x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+5=0\\2x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{3}{2}\end{cases}}\)
3) \(x^2-2x-15=0\)
\(x^2-2x+1-16=0\)
\(\left(x-1\right)^2-4^2=0\)
\(\left(x-1-4\right)\left(x-1+4\right)=0\)
\(\left(x-5\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)
1) ( x - 1 )3 - ( x + 3 )( x2 - 3x + 9 ) + 3( x2 - 4 ) = 2
⇔ x3 - 3x2 + 3x - 1 - ( x3 + 27 ) + 3x2 - 12 = 2
⇔ x3 + 3x - 13 - x3 - 27 = 2
⇔ 3x - 40 = 2
⇔ 3x = 42
⇔ x = 14
2) ( x2 - 4x )2 - 8( x2 - 4x ) + 15 = 0
Đặt t = x2 - 4x
pt ⇔ t2 - 8t + 15 = 0
⇔ t2 - 3t - 5t + 15 = 0
⇔ t( t - 3 ) - 5( t - 3 ) = 0
⇔ ( t - 3 )( t - 5 ) = 0
⇔ ( x2 - 4x - 3 )( x2 - 4x - 5 ) = 0
⇔ \(\orbr{\begin{cases}x^2-4x-3=0\\x^2-4x-5=0\end{cases}}\)
+) x2 - 4x - 3 = 0
⇔ ( x2 - 4x + 4 ) - 7 = 0
⇔ ( x - 2 )2 - ( √7 )2 = 0
⇔ ( x - 2 - √7 )( x - 2 + √7 ) = 0
⇔ \(\orbr{\begin{cases}x-2-\sqrt{7}=0\\x-2+\sqrt{7}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2+\sqrt{7}\\x=2-\sqrt{7}\end{cases}}\)
+) x2 - 4x - 5 = 0
⇔ x2 - 5x + x - 5 = 0
⇔ x( x - 5 ) + ( x - 5 ) = 0
⇔ ( x - 5 )( x + 1 ) = 0
⇔ x = 5 hoặc x = -1
Vậy ...
Bài làm
(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2
<=> x3 - 3x2 + 3x - 1 - (x3 + 33) + 3x2 - 12 = 2
<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 - 2 = 0
<=> 3x - 42 = 0
<=> 3x = 42
<=> x = 14
Vậy nghiệm của phương trình là 4.
(x2 - 4x)2 - 8(x2 - 4x) + 15 = 0
Đặt x2 - 4x = t, ta có:
t2 - 8t + 15 = 0
<=> t2 - 3t - 5t + 15 = 0
<=> t(t - 3) - 5(t - 3) = 0
<=> (t - 5)(t - 3) = 0
<=> \(\orbr{\begin{cases}t-5=0\\t-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=5\\t=3\end{cases}}\)
Thay: t = 5 vào x2 - 4x ta được:
x2 - 4x = 5
<=> x2 - 4x - 5 = 0
<=> x2 - 5x + x - 5 = 0
<=> x(x - 5) + (x - 5) = 0
<=> (x + 1)(x - 5) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}}\)
Thay: t = 3 vào x2 - 4x ta được:
x2 - 4x = 3
<=> x2 - 4x - 3 = 0
<=> x2 - 4x + 4 - 7 = 0
<=> (x - 2)2 - 7 = 0
<=> (x - 2)2 = V 7
<=> x - 2 = + V 7
<=> \(\orbr{\begin{cases}x-2=-7\\x-2=7\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\sqrt{7}+2\\x=\sqrt{7}+2\end{cases}}}\)
Vậy x = { -1; 5; \(-\sqrt{7}+2;\sqrt{7}+2\)}
câu này sai đề (x -3)3 -(x-3)(x2 +3x+9) +9(x+1)2 = 15