Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 )
+ Xét x = 1 ; x = 2 ; x = 3 ; x = 4 thì ta luôn có A = 0 ( loại )
Xét x < 1 ta có :
x - 1 < 0
x - 2 < 0
x - 3 < 0
x - 4 < 0
=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0 ( chọn )
Xét x > 4 ta có :
x - 1 > 0
x - 2 > 0
x - 3 > 0
x - 4 > 0
=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0 ( nhận )
Để A > 0 thì x < 1 hoặc x > 4
4 < x < 1
=> x = 3 ; 2
Ta có :
Với \(x< 1\) thì \(x-1,x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Với \(1\le x< 2\) thì \(x-1\ge0;x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
Với \(2\le x< 3\) thì \(x-1\ge0;x-2\ge0,x-3< 0,x-4< 0\) nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Với \(3\le x< 4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4< 0\) nên
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
Với \(x\ge4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4\ge0\)
nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)
Vậy nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\Leftrightarrow x< 1\) hoặc \(2< x< 3\) hoặc x > 4.
|x|<=3
nên \(x\in\left\{0;1;-1;2;-2;3;-3\right\}\)
|y|<=5
nên \(y\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5\right\}\)
mà x-y=2
nên \(\left(x,y\right)\in\left\{\left(0;-2\right);\left(1;-1\right);\left(-1;-3\right);\left(2;0\right);\left(3;1\right);\left(-3;-5\right)\right\}\)
Bài 3\(x=-2002\):
a.
\(\left|x\right|=2002\)
\(x=\pm2002\)
Vậy \(x=2002\) hoặc \(x=-2002\)
b.
\(\left|x\right|=0\)
\(x=0\)
c.
\(\left|x\right|< 3\)
\(\left|x\right|\in\left\{0;1;2\right\}\)
\(x\in\left\{-2;-2;0;1;2\right\}\)
Chúc bạn học tốt
3. Tìm x biết
a. |x|=2002
=> x = 2002 hoặc -2002
b, |x|=0
=> x = 0
c.|x|<3
=> |x| = {0; 1; 2}
x = {0; 1; -1; 2; -2}
d.|x|>4 và x<-70
=> x < -70
x = {-71; -72, -73; -74; ...}
Bài 1:
\(a.\left|x\right|+\left|6\right|=\left|-27\right|\\ \Leftrightarrow\left|x\right|+6=27\\ \Leftrightarrow\left|x\right|=27-6=21\\ \Leftrightarrow\left\{{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)
a. |x||x| + |+6||+6| = |−27|
x + 6 = 27
x = 27 - 6
x = 21
Vậy x = 21
b. |−5||−5| . |x||x| = |−20|
5 . x = 20
x = 20 : 5
x 4
Vậy x = 4
c. |x| = |−17| và x > 0
|x| = 17
Vì |x| = 17
nên x = -17 hoặc 17
mà x > 0 => x = 17
Vậy x = 17 hoặc x = -17
d. |x||x| = |23||23| và x < 0
|x| = 23
Vì |x| = 23
nên x = 23 hoặc -23
mà x < 0 => x = -23
e. 12 ≤≤ |x||x| < 15
Vì 12 ≤ |x| < 15
nên x = {12; 13; 14}
Vậy x € {12; 13; 14}
f. |x| > 3
Vì |x| > 3
nên x = -2; -1; 0; 1; 2;
Vậy x € {-2; -1; 1; 2}
a. A=
{
x∈Z|−3<x≤7}
A = {-2; -1; 0; 1; 2; 3; 4; 5; 6; 7}
b. B={x∈Z|3≤|x|<7}
B = {3; 4; 5; 6}
c. C={x∈Z||x|>5}
C = {6; 7; 8; 9; ...}
a) Để \(1983\left(x-7\right)>0\) thì \(x-7>0\).
\(\Rightarrow x>0+7\Rightarrow x>7\)
\(\Rightarrow x\in\left\{8;9;10;11;12;...\right\}\)
b) Để \(\left(-2010\right)\left(x+3\right)>0\) thì \(x+3< 0\).
\(\Rightarrow x< 0-3\Rightarrow x< \left(-3\right)\)
\(\Rightarrow x\in\left\{-4;-5;-6;-7;-8;...\right\}\)
x(3 - x) > 0
TH1: \(\int^{x>0}_{3-x>0}\Leftrightarrow\int^{x>0}_{x<3}\) 0 < x < 3 => x thuộc {1;2}
TH2: \(\int^{x<0}_{3-x<0}\Leftrightarrow\int^{x<0}_{x>3}\) (vô lí)
Vậy x \(\in\) {1 ; 2}
\(a.\left(x-4\right)\left(x+7\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-4=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\x=-7\end{cases}}}\)
\(b.x\left(x+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-3\end{cases}}}\)
\(c.\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=5\end{cases}}}\)
\(d.\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x^2+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\x^2=-1\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\x=-\left(-1\right)or\left(-1\right)\end{cases}}}\)
a) ( x - 4 ) . ( x + 7 ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 4 = 0 => x = 0 + 4 = 4
+) nếu x + 7 = 0 => x = 0 - 7 = -7
vậy x = { 4 ; -7 }
b) x . ( x + 3 ) = 0
x + 3 = 0 : x
x + 3 = 0
x = 0 - 3
x = -3
vậy x = -3
c) ( x - 2 ) . ( 5 - x ) = 0
một phép nhân có tích bằng 0
=> một trong hai thừa số này bằng 0
+) nếu x - 2 = 0 => x = 0 + 2 = 2
+) nếu 5 - x = 0 => x = 5 - 0 = 5
vậy x = { 2 ; 5 }
d) ( x - 1 ) . ( x2 + 1 ) = 0
=> x - 1 = 0 hoặc x2 + 1 = 0
+) x - 1 = 0 => x = 0 + 1 = 1
+) x2 + 1 = 0 => x2 = 0 - 1 = -1 => x = -1
vậy x = { 1 ; -1 }
a) \(\left(x-4\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)
b) \(x\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
c) \(\left(x-2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\5-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)
d) \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+1>0\) )
\(\Leftrightarrow x=1\)
a)
\(\left(x-4\right)\left(x-7\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=4\\x=7\end{array}\right.\)
Vậy x = 4 ; x = 7
b)
\(x\left(x+3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=-3\end{array}\right.\)
Vậy x = 0 ; x = - 3
c)
\(\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=5\end{array}\right.\)
Vậy x = 2 ; x = 5
d)
\(\left(x-1\right)\left(x^2+1\right)=0\)
Mà \(x^2+1\ge1\)
=> x = - 1
Vậy x = - 1
Ta thấy \(\left|2x+3\right|\ge0\forall x\)
Để \(\left|2x+3\right|\le5\)
\(\Rightarrow-5\le2x+3\le5\)
\(\Rightarrow-4\le x\le1\)
Mà x > 0
\(\Rightarrow x=1\)
KL x=1
Ta có:\(2x+3=5\)
\(\Rightarrow2x=5-3\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\).Mình nhanh nhất tịck nhé