Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |2x-1|=5-x
\(\Leftrightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=-5+x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
b)|2x-1|>2 <=>\(\orbr{\begin{cases}2x-1>2\\2x-1< -2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x>\frac{3}{2}\\x< \frac{-1}{2}\end{cases}}\)
c)\(\Leftrightarrow-5< 3x-7< 5\) <=>2/3<x<4
a) \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{9}{15}-\frac{10}{15}=\frac{-1}{15}\)
\(x=\frac{-1}{15}.\frac{1}{3}\)
\(x=\frac{-1}{45}\)
Vậy x = \(\frac{-1}{45}\)
c) \(\left|2x-1\right|+1=4\)
\(\left|2x-1\right|=4-1=3\)
2x-1 = 3 ; -3
TH1: 2.x - 1 = 3
2.x = 3 + 1 = 4
x = 4 : 2 = 2
TH2: 2.x - 1 = -3
2.x = -3 + 1 = -2
x = -2 : 2 = -1
Vậy x \(\in\){ 2 ; -1 }
Ngại làm ấn máy ==
a ) \(A=\left|x+1\right|+\left|x+2\right|-2x+3\ge2x+3-2x+3=6\)
Dấu " = " xảy ra khi \(\left(x+2\right)\left(x+1\right)\ge0\)
b )
\(B=\left|2x+3\right|+\left|1-2x\right|\ge\left|2x+3+1-2x\right|=4\)
Dấu " = " xảy ra khi \(\left(2x+3\right)\left(1-2x\right)\ge0\)
c )
\(C=\left|x-1\right|+\left|x-2\right|+\left|x-2\right|\ge\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
Dấu " = " xảy ra khi \(x=2\)
b) Theo bài ra , ta có :
(2x - 5) - (3x - 7) = x + 3
(=) 2x - 5 - 3x + 7 = x + 3
(=) -2x = 1
(=) x = -1/2
Vậy x = -1/2
Chúc bạn học tốt =))
A,th1: x-1<0
x<1
x+2>0
x>-2
th2: x-1>0
x>1
x+2<0
x<-2
b, /x-2012/=x+2015
th1: x-2012=x+2015
0x=4027(vô lí)
0 tìm được x
th2: x-2012=-x-2015
2x=-3
x=-3/2
c,/x-1/=5-2x
th1: x-1=5-2x
3x=6
x=2
th2: x-1=2x-5
x=4
**** cho mk nha
Bài giải
a, \(\left|x-0,6\right|< \frac{1}{2}\)
* Nếu \(x-0,6< 0\) thì :
\(-\left(x-0,6\right)< \frac{1}{2}\)
\(-x+\frac{3}{5}< \frac{1}{2}\)
\(-x< \frac{1}{2}-\frac{3}{5}\)
\(-x< -\frac{1}{10}\)
\(x< \frac{1}{10}\)
a) bn xem lại xem đề bài có đúng k nhé !
Nếu đúng thì kq sẽ là 1
b)
\(\Rightarrow x\in\begin{cases}0\\\frac{10}{3}\end{cases}\)
c)
Ta có:Vế trai luôn dương.
=>Vế phải luôn dương.
2x-3>0=>x>1
Dễ thấy sau khi suy luận như trên:
|x-1|=x-1
|x+1|=x+1
=>x-1+x+1=2x-3
2x=2x-3
=>x thuộc rỗng.
Ta có:Vế trai luôn dương.
=>Vế phải luôn dương.
2x-3>0=>x>1
Dễ thấy sau khi suy luận như trên:
|x-1|=x-1
|x+1|=x+1
=>x-1+x+1=2x-3
2x=2x-3
=>x thuộc rỗng.