Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x-x^2=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy Max A = \(\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
b) \(B=2x-2x^2=2\left(x-x^2\right)=-2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\le\frac{1}{2}\)
Vậy Max B = \(\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
a ) \(A=x-x^2=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Vậy MAX \(A=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)
b) \(B=2x-2x^2=2\left(x-x^2\right)=-2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\le\frac{1}{2}\)
Vậy MAX \(B=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
Dịch: Tìm giá trị của k nếu :\(x^3+kx^2+\left(4-k\right)x-35⋮\left(x-7\right)\)
=>x-7=0=>x=7 => Là nghiệm của phương trình .
Thế x=7 vào biểu thức , ta có :
\(7^3+k.7^2+\left(4-k\right).7-35\)
=\(343+49k+28-7k-35=>42k=-336=>k=-8\)
Vậy k=-8
Ta có
\(\left(x+y\right)^2=x^2+y^2+2xy\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\) (1)
\(\left(x-y\right)^2=x^2+y^2-2xy\)
\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\) (2)
Cộng (1) và (2)
\(2\left(x^2+y^2\right)=\left(x+y\right)^2-2xy+\left(x-y\right)^2+2xy\)
\(\Rightarrow2\left(x^2+y^2\right)=\left(x+y\right)^2+\left(x-y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)=2^2+\left(\frac{3\sqrt{2}}{2}\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)=4+4,5\)
\(\Rightarrow2\left(x^2+y^2\right)=8,5\)
\(\Rightarrow x^2+y^2=4,25\)
Vây \(x^2+y^2=4,25\)
Ta có : \(\begin{cases}x+y=2\\x-y=\frac{3\sqrt{2}}{2}\end{cases}\)
Xét : \(\left(x+y\right)^2=x^2+y^2+2xy=4\left(1\right)\)
\(\left(x-y\right)^2=x^2-2xy+y^2=\frac{9}{2}\left(2\right)\)
Cộng (1) và (2) được : \(2\left(x^2+y^2\right)=4+\frac{9}{2}\Leftrightarrow x^2+y^2=\frac{17}{4}\)
\(\left(x-4\right)^2-36=0\)
\(\Leftrightarrow\left(x-4\right)^2=0+36\)
\(\Leftrightarrow\left(x-4\right)^2=36\)
\(\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{36}\)
\(\Leftrightarrow\left(x-4\right)=\pm6\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=6\\x-4=-6\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=10\\x=-2\end{array}\right.\)
Vậy \(x\in\left\{10;-2\right\}\)
( x - 4)2 = 36
( x - 4)2 = 62
x - 4 = 6
x = 10