K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

a) \(\sqrt{25x}\) = 35 

b) \(\sqrt{4x}\)<= 162

 c) \(3\sqrt{x}\) = √12

 d) \(2\sqrt{x}\) >=10
 

12 tháng 7 2017

Đùa ak :)

23 tháng 7 2017

a)√25x = 35

⇔5√x = 35

⇔√x = 7

⇔x = 49

b)√4x ≤ 162

⇔2√x ≤ 162

⇔√x ≤ 81

⇔x ≤ 6561

Suy ra : 0 ≤ x ≤ 6561

c)3√x = 12

⇔3√x = 2√3

⇔√x = 23√3

⇔x = (23√3)2

⇔x = −43

d) 2√x ≥ √10

⇔√x ≥ √102

⇔ x = 52



25 tháng 9 2017

làm sao ?? cho e hỏi cái

25 tháng 7 2017

Hỏi đáp Toán

1 tháng 11 2020

a) \(\sqrt{x^4}=2\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x^2\right)^2}=2\)

⇔ \(\left|x^2\right|=2\)

⇔ \(\orbr{\begin{cases}x^2=2\\x^2=-2\left(loai\right)\end{cases}}\)

⇔ x2 - 2 = 0

⇔ ( x - √2 )( x + √2 ) = 0

⇔ x - √2 = 0 hoặc x + √2 = 0

⇔ x = ±√2 

b) \(3\sqrt{x+1}-8=0\)( ĐK x ≥ -1 )

⇔ \(3\sqrt{x+1}=8\)

⇔ \(\sqrt{x+1}=\frac{8}{3}\)

⇔ \(x+1=\frac{64}{9}\)

⇔ \(x=\frac{55}{9}\)( tm )

c) \(2\sqrt{x-3}+\sqrt{25x-75}=14\)( ĐK x ≥ 3 ) ( Vầy hợp lí hơn á )

⇔ \(2\sqrt{x-3}+\sqrt{5^2\left(x-3\right)}=14\)

⇔ \(2\sqrt{x-3}+5\sqrt{x-3}=14\)

⇔ \(7\sqrt{x-3}=14\)

⇔ \(\sqrt{x-3}=2\)

⇔ \(x-3=4\)

⇔ \(x=7\)( tm )

d) \(\sqrt{\left(3x-1\right)^2}=5\)( ĐK x ∈ R )

⇔ \(\left|3x-1\right|=5\)

⇔ \(\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

e) \(\sqrt{x^2+4x+4}-6=0\)( ĐK x ∈ R )

⇔ \(\sqrt{\left(x+2\right)^2}=6\)

⇔ \(\left|x+2\right|=6\)

⇔ \(\orbr{\begin{cases}x+2=6\\x+2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-8\end{cases}}\)

1 tháng 11 2020

\(a)\)\(\sqrt{x^4}=2\)\(\Leftrightarrow\)\(x^2=2\)\(\Rightarrow\)\(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)

Vậy \(x=\sqrt{2}\)\(hoặc\)\(x=-\sqrt{2}\)

\(b)\)\(ĐK:x\ge0\)

\(3\sqrt{x+1}-8=0\)\(\Leftrightarrow\)\(3\sqrt{x}=8\)\(\Leftrightarrow\)\(\sqrt{x}=\frac{8}{3}\)\(\Leftrightarrow\)\(x=(\frac{8}{3})^2\)\(\Leftrightarrow\)\(x=\frac{64}{9}\)\((TM)\)

Vậy \(x=\frac{64}{9}\)

\(d)\)\(\sqrt{(3x-1)^2}=5\)\(\Leftrightarrow\)\(|3x-1|=5\)\((1)\)

  • Nếu \(x\ge\frac{1}{3}\)thì \(\left(1\right)\Leftrightarrow3x-1=5\)\(\Leftrightarrow\)\(3x=6\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)
  • Nếu \(x< \frac{1}{3}\)thì \((1)\Leftrightarrow-\left(3x-1\right)=5\)\(\Leftrightarrow\)\(3x-1=-5\)\(\Leftrightarrow\)\(3x=-5+1\)\(\Leftrightarrow\)\(3x=-4\)\(\Leftrightarrow\)\(x=\frac{-4}{3}\left(TM\right)\)

Vậy \(x\in\hept{2;\frac{-4}{3}}\)

  • \(e)\)\(\sqrt{x^2+4x+4}-6=0\)\(\Leftrightarrow\)\(\sqrt{(x+2)^2}=6\)\(\Leftrightarrow\)\(|x+2|=6\)\(\left(2\right)\)

                -Nếu \(x\ge-2\)thì \(\left(2\right)\Leftrightarrow x+2=6\Leftrightarrow x=4(TM)\)

                -Nếu \(x< -2\)thì \(\left(2\right)\Leftrightarrow-\left(x+2\right)=6\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(TM\right)\)

Vậy \(x=4;x=-8\)

a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)

\(=\sqrt{x-3}+3-x\)

c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)

=>2 căn x-2=18

=>x-2=81

=>x=83

3 tháng 9 2018

a) Ta có: \(A=x^2+4x+7=x^2+2.x.2+2^2+3=\left(x+2\right)^2+3\ge3\)

Dấu "=" xảy ra <=> x + 2 =0 => x = -2

Vậy AMin = 3 khi và chỉ khi x = -2

b) \(B=x^2-x+1=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy BMin = 3/4 khi và chỉ khi x = 1/2

c) \(C=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> x+1/2 = 0 <=> x = -1/2

Vậy CMin = 3/4 khi và chỉ khi x = -1/2

e) \(E=x+\sqrt{x}+1=\left(\sqrt{x}\right)^2+2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" không xảy ra

g) \(G=x-\sqrt{x}+1=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra <=> \(\sqrt{x}-\frac{1}{2}=0\Leftrightarrow\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)

Vậy GMin = 3/4 khi x = 1/4

3 tháng 9 2018

min hết à bạn 

9 tháng 9 2020
https://i.imgur.com/UhA0o06.jpg
4 tháng 10 2020

a) Ta có: \(\left|x-1\right|+\left|x^2+3\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2+3\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2+3\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2+3\right|=0\)

\(\Rightarrow x^2=-3\) => vô lý

Vậy PT vô nghiệm

4 tháng 10 2020

b) Ta có: \(\left|x-1\right|+\left|x^2-1\right|=0\)

\(\Leftrightarrow\left|x-1\right|=-\left|x^2-1\right|\)

Mà \(\hept{\begin{cases}\left|x-1\right|\ge0\\-\left|x^2-1\right|\le0\end{cases}\left(\forall x\right)}\)

Dấu "=" xảy ra khi: \(\left|x-1\right|=-\left|x^2-1\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\x^2=1\end{cases}}\Rightarrow x=1\)

Vậy x = 1