K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

\(b)4x\left(x-2014\right)-\left(x-2014\right)=0\)

\(\left(4x-1\right)\left(x-2014\right)=0\)

\(\Leftrightarrow TH1:4x-1=0\)

\(4x=1\)

\(x=\frac{1}{4}\)

\(TH2:x-2014=0\)

\(x=2014\)

Vậy \(x\in\left\{\frac{1}{4};2014\right\}\)

4 tháng 10 2019

\(b,4x\left(x-2014\right)-x+2014=0\)

\(\Leftrightarrow\left(x-2014\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2014\\x=\frac{1}{4}\end{cases}}\)

\(c,\left(x+1\right)^2=x+1\)

\(\Leftrightarrow\left(x+1\right)x=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

10 tháng 10 2018

\(x^2-2015x+2014=0\)

\(x^2-x-2014x+2014=0\)

\(x\left(x-1\right)-2014\left(x-1\right)=0\)

\(\left(x-1\right)\left(x-2014\right)=0\)

TH1:x -1 = 0

=>x=1

TH2 : x-2014=0

=> x=2014

\(x^3-4x=0\)

\(x\left(x^2-4\right)=0\)

\(x\left(x-4\right)\left(x+4\right)=0\)

TH1: x=0

TH2:x-4=0

=> x= 4

TH3: x+4=0

=> x=(-4)

Hok tốt

14 tháng 2 2016

x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z 

Thay x=y=z vào x2014+y2014+z2014=32015 ta được:

3.x3014=3.32014

=>x2014=32014

=>x=3 hoặc x=-3

Vậy x=y=z=3 hoặc x=y=z=-3

14 tháng 2 2016

ko biết duyệt nha

14 tháng 2 2016

a) Ta có : 

abab   = ab .101

Để abab là số chính phương thì ab chỉ có thể bằng 101.

Mà ab là số có hai chữ số 

=> abab không phải là số chính phương

còn lại tự làm

14 tháng 2 2016

mik làm có đúng ko ?

x2+y2+z2=xy+yz+zx

<=>2x2+2y2+2z2-2xy-2yz-2xz=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x=y=z 

Thay x=y=z vào x2014+y2014+z2014=32015 ta được:

3.x3014=3.32014

=>x2014=32014

=>x=3 hoặc x=-3

Vậy x=y=z=3 hoặc x=y=z=-3

6 tháng 3 2016

to moi hoc lop 5 thoi 

6 tháng 3 2016

Ta có:

\(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z=-34\)

\(\Leftrightarrow\)  \(4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0\)

\(\Leftrightarrow\)  \(4x^2-\left(4xy+4xz\right)+\left(y^2+2yz+z^2\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Leftrightarrow\)  \(4x^2-4x\left(y+z\right)+\left(y+z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

\(\Leftrightarrow\)  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Mặt khác, ta lại có:  \(\left[2x-\left(y+z\right)\right]^2\ge0;\)  \(\left(y-3\right)^2\ge0\)  và  \(\left(z-5\right)^2\ge0\)  với mọi  \(x;\)  \(y;\)  \(z\)

nên  \(\left[2x-\left(y+z\right)\right]^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)

Do đó,  dấu  \(''=''\)  xảy ra  \(\Leftrightarrow\)   \(\left[2x-\left(y+z\right)\right]^2=0;\)  \(\left(y-3\right)^2=0\)  và  \(\left(z-5\right)^2=0\)

                                           \(\Leftrightarrow\)   \(2x-\left(y+z\right)=0;\)  \(y-3=0\)  và  \(z-5=0\)

                                           \(\Leftrightarrow\)   \(x=\frac{y+z}{2};\)  \(y=3\)  và  \(z=5\)

Khi đó,  \(x=\frac{3+5}{2}=\frac{8}{2}=4\)

Thay các giá trị trên của các biến  \(x;\)  \(y;\)  \(z\)  lần lượt vào  biểu thức  \(Q\), ta được:

\(Q=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}=2\)

4 tháng 4 2020

(x2-2)2=12+4x-4x2 <=> x4 -4x2+4 = 12+4x-4x2

                              <=> x4 -4x-8 =0

                              <=> x4-2x3+2x3-4x2+4x2-8x+4x-8=0

                              <=> x3 (x-2) + 2x2(x-2) + 4x(x-2) +4(x-2) =0

                              <=> (x-2)(x3+2x2+4x+4)=0

                              <=> x-2=0 hoặc x3+2x2+4x+4=0

+) x-2=0 <=> x=2

+) x3+2x2+4x+4=0 <=> (x3+2x2+x)+3x+4=0 <=> x(x+1)2+3x+4=0

  -) Nếu x>=0 -> VT>0(loại)

  -) Nếu x=-1 -> VT=1(loại)

  -) Nếu x<=-2 -> x(x+1)2<0(bạn tự chứng minh) (1)

   Do x<=-2 -> 3x<=-6 -> 3x+4 <=-2<0 (2)

   Từ (1) và (2) -> VT<0(loại)

    Vậy tập nghiệm của phương trình là S={2}