Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Đặt \(A=\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{9}-\frac{1}{x+1}=\frac{1}{9}\)
Đến đây thì ez rùi nhé ^^
\(D=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{9999}{100^2}\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{99.101}{100^2}\)
\(=\frac{1.2...99}{2.3...100}.\frac{3.4....101}{2.3....100}=\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
1 b) Đặt A=\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{66}+\frac{1}{78}\)
=> \(\frac{A}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{132}+\frac{1}{156}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{11.12}+\frac{1}{12.13}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}=\frac{1}{3}-\frac{1}{13}\)
=> \(A=\frac{2}{3}-\frac{2}{13}\)\(=\frac{20}{39}\)
Ta có: \(\frac{x}{6}+\frac{x}{10}+\frac{x}{15}+\frac{x}{21}+...+\frac{x}{78}=\frac{220}{39}\)
<=> \(x\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{78}\right)=\frac{220}{39}\Leftrightarrow x.\frac{20}{39}=\frac{220}{39}\Leftrightarrow x=11\)
a)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+2\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x\left(x+2\right)}\right)=\frac{2}{9}\)
\(2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{x+2}=\frac{2}{9}:2\)
\(\frac{1}{x+2}=\frac{1}{6}-\frac{1}{9}\)
\(\frac{1}{x+2}=\frac{1}{18}\)
=>x+2=18
=>x=16
b tương tự nhân nó với 1/2
\(b)\) Ta có: \(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45\text{ }}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)
\(\Leftrightarrow x-\frac{37}{45}=1\)
\(\Leftrightarrow x=1+\frac{37}{45}\)
\(\Leftrightarrow x=\frac{82}{45}\)
Vậy \(x=\frac{82}{45}\)
tung từng vế một thôi
bạn nhác quá éo chịu suy nghĩ
bài này dễ vl
Bài 1:
a, \(\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{\left(5x+1\right)\left(5x+6\right)}=\frac{2010}{2011}\)
\(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5x+1}-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(1-\frac{1}{5x+6}=\frac{2010}{2011}\)
\(\frac{1}{5x+6}=1-\frac{2010}{2011}\)
\(\frac{1}{5x+6}=\frac{1}{2011}\)
=> 5x + 6 = 2011
5x = 2011 - 6
5x = 2005
x = 2005 : 5
x = 401
b, \(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\frac{7}{x}=\frac{29}{45}-\frac{8}{45}\)
\(\frac{7}{x}=\frac{7}{15}\)
=> x = 15
c, ghi lại đề
d, ghi lại đề
Bài 2:
\(\frac{1}{n}-\frac{1}{n+a}=\frac{n+a}{n\left(n+a\right)}-\frac{n}{n\left(n+a\right)}=\frac{a}{n\left(n+a\right)}\)
Ta có :
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\) ( cái đề hình như có 1 phân số \(\frac{2}{9}\) đúng không bạn )
\(\Leftrightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(\Leftrightarrow\)\(2\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2}{9}\)
\(\Leftrightarrow\)\(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x\left(x+1\right)}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}\)
\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=1:\frac{1}{18}\)
\(\Leftrightarrow\)\(x+1=18\)
\(\Leftrightarrow\)\(x=18-1\)
\(\Leftrightarrow\)\(x=17\)
Vậy \(x=17\)
Chúc bạn học tốt ~
\(\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)
\(\frac{2}{90}+\frac{2}{110}+\frac{2}{132}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)
\(2\left(\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)
\(2\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)
\(2\left(\frac{1}{9}-\frac{1}{\left(x+1\right)}\right)=\frac{1}{9}\)
\(\frac{1}{9}-\frac{1}{\left(x+1\right)}=\frac{1}{18}\)
\(\frac{1}{\left(x+1\right)}=\frac{1}{18}\)
\(x=17\)