Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
\(\Leftrightarrow\)\(\sqrt{x-1+4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\)\(\left|\sqrt{x-1}+2\right|+\left|\sqrt{x-1}-3\right|=5\)
\(\Leftrightarrow\)\(\sqrt{x-1}+\left|\sqrt{x-1}-3\right|=3\)
+) Với \(\sqrt{x-1}-3\ge0\)\(\Leftrightarrow\)\(x\ge10\) ta có :
\(\sqrt{x-1}+\sqrt{x-1}-3=3\)
\(\Leftrightarrow\)\(2\sqrt{x-1}=6\)
\(\Leftrightarrow\)\(\sqrt{x-1}=3\)
\(\Leftrightarrow\)\(x-1=9\)
\(\Leftrightarrow\)\(x=10\) ( thỏa mãn )
+) Với \(\sqrt{x-1}-3< 0\)\(\Leftrightarrow\)\(x< 10\) ta có :
\(\sqrt{x-1}-\sqrt{x-1}+3=3\)
\(\Leftrightarrow\)\(3=3\) ( thõa mãn với mọi \(x< 10\) )
Vậy \(x\le10\)
Chúc bạn học tốt ~
PS : mới lớp 8, sai thì thôi nhé :v
\(\sqrt{4\left(1-x\right)^2}-6=0\)
<=> \(\left|2\left(1-x\right)\right|=6\)
TH1: x \(\ge\)1 Khi đó pt trở thành:
\(2\left(x-1\right)=6\)
<=> x - 1 = 3
<=> x = 4 (tm)
TH2: x < 1, khi đó pt trở thành:
2(1 - x) = 6
<=> 1 - x = 3
<=> x = -2(tm)
vậy S= {4; -2}
Trả lời:
\(\sqrt{4\left(1-x\right)^2}-6=0\)
\(\Leftrightarrow2.\left|1-x\right|=6\)
\(\Leftrightarrow\left|1-x\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=3\\1-x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
Vậy \(x=\left\{-2,4\right\}\)
\(\sqrt{4x^2+4x+1}=x+2\)\(\left(x\ge-2\right)\)
\(\Leftrightarrow4x^2+4x+1=\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+4x+1=x^2+4x+4\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)
Vậy \(x=\left\{1,-1\right\}\)
\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{20-12\sqrt{5}+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)
a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)
\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)
\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)
\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)
b)\(x-5\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)
998 vì (căn x)^2 = x mà bình phương của 1 số là số đó nhân với chính nó mà nhân chính là : x.y=z <=> z=(x+x)y lần
nên căn của căn và lặp lại sẽ có tổng bằng số đầu(?) kém giải thích :v
a: \(P=\dfrac{-1+2\sqrt{x}-x+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}:\dfrac{2x+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}-1}{\sqrt{5}-2}=3+\sqrt{5}\)
\(\sqrt{x+1}\) + \(\sqrt{x+6}\) = 5
\(\sqrt{\left(x+1\right)\left(x-1\right)}\) + \(\sqrt{\left(x+6\right)\left(x-6\right)}\) = 5
x - 1 + x - 6 = 5
2x - 7 = 5
x = 6
\(ĐKXĐ:\left\{{}\begin{matrix}x+1\ge0\\x+6\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge-6\end{matrix}\right.\Leftrightarrow x\ge-1\)
- Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x+6}=b\end{matrix}\right.\left(a\ge0,b\ge\sqrt{5}\right)\)
\(\Rightarrow b^2-a^2=\left(\sqrt{x+6}\right)^2-\left(\sqrt{x+1}\right)=x+6-\left(x+1\right)=5\)
- Ta có hệ phương trình:
\(\left\{{}\begin{matrix}b+a=5\\b^2-a^2=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\\left(b+a\right)\left(b-a\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\5\left(b-a\right)=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\b-a=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\2b=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3+a=5\\b=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+1=4\\x+6=9\end{matrix}\right.\)
\(\Leftrightarrow x=3\left(nhận\right)\)
- Vậy tập nghiệm của pt trên là \(S=\left\{3\right\}\)