Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
\(\Leftrightarrow\)\(\sqrt{x-1+4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)
\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)
\(\Leftrightarrow\)\(\left|\sqrt{x-1}+2\right|+\left|\sqrt{x-1}-3\right|=5\)
\(\Leftrightarrow\)\(\sqrt{x-1}+\left|\sqrt{x-1}-3\right|=3\)
+) Với \(\sqrt{x-1}-3\ge0\)\(\Leftrightarrow\)\(x\ge10\) ta có :
\(\sqrt{x-1}+\sqrt{x-1}-3=3\)
\(\Leftrightarrow\)\(2\sqrt{x-1}=6\)
\(\Leftrightarrow\)\(\sqrt{x-1}=3\)
\(\Leftrightarrow\)\(x-1=9\)
\(\Leftrightarrow\)\(x=10\) ( thỏa mãn )
+) Với \(\sqrt{x-1}-3< 0\)\(\Leftrightarrow\)\(x< 10\) ta có :
\(\sqrt{x-1}-\sqrt{x-1}+3=3\)
\(\Leftrightarrow\)\(3=3\) ( thõa mãn với mọi \(x< 10\) )
Vậy \(x\le10\)
Chúc bạn học tốt ~
PS : mới lớp 8, sai thì thôi nhé :v
\(\sqrt{4\left(1-x\right)^2}-6=0\)
<=> \(\left|2\left(1-x\right)\right|=6\)
TH1: x \(\ge\)1 Khi đó pt trở thành:
\(2\left(x-1\right)=6\)
<=> x - 1 = 3
<=> x = 4 (tm)
TH2: x < 1, khi đó pt trở thành:
2(1 - x) = 6
<=> 1 - x = 3
<=> x = -2(tm)
vậy S= {4; -2}
Trả lời:
\(\sqrt{4\left(1-x\right)^2}-6=0\)
\(\Leftrightarrow2.\left|1-x\right|=6\)
\(\Leftrightarrow\left|1-x\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=3\\1-x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)
Vậy \(x=\left\{-2,4\right\}\)
\(\sqrt{4x^2+4x+1}=x+2\)\(\left(x\ge-2\right)\)
\(\Leftrightarrow4x^2+4x+1=\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+4x+1=x^2+4x+4\)
\(\Leftrightarrow3x^2=3\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)
Vậy \(x=\left\{1,-1\right\}\)
\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{20-12\sqrt{5}+9}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)
a)\(\sqrt{x^2+x+\frac{1}{4}}-\sqrt{4-2\sqrt{3}}=0\)
\(\Leftrightarrow\sqrt{\left(x+\frac{1}{2}\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}=0\)
\(\Leftrightarrow x+\frac{1}{2}-\sqrt{3}+1=0\)
\(\Leftrightarrow x=\sqrt{3}-1-\frac{1}{2}\)
\(\Leftrightarrow x=\sqrt{3}-\frac{3}{2}\)
b)\(x-5\sqrt{x}+6=0\)
\(\Leftrightarrow x-2\sqrt{x}-3\sqrt{x}+6=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-2\right)-3\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}-2=0\\\sqrt{x}-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=2\\\sqrt{x}=3\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=9\end{array}\right.\)
a: \(P=\dfrac{-1+2\sqrt{x}-x+x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}:\dfrac{2x+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}-1}{\sqrt{5}-2}=3+\sqrt{5}\)
a. \(\Rightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\Rightarrow\sqrt{x+5}\left(2-3+4\right)=6\Rightarrow\sqrt{x+5}=2\Rightarrow x+5=4\Rightarrow x=-1\)
b.\(\Rightarrow5\sqrt{x-1}-\frac{5}{2}\sqrt{x-1}-\sqrt{x-1}=6\Rightarrow\sqrt{x-1}\left(5-\frac{5}{2}-1\right)=6\Rightarrow\sqrt{x-1}=4\Rightarrow x-1=16\Rightarrow x=17\)