Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}$
$\Rightarrow 7(x^2+y^2)=10(x^2-2y^2)$
$\Leftrightarrow 7x^2+7y^2=10x^2-20y^2$
$\Leftrightarrow 27y^2=3x^2$
$\Leftrightarrow 9y^2=x^2$
$\Leftrightarrow x=\pm 3y$
Nếu $x=3y$ thì:
$x^4y^4=81$
$\Rightarrow (xy)^2=9$
$\Rightarrow (3y.y)^2=9\Rightarrow y^4=1\Rightarrow y=\pm 1\Rightarrow x=3y=\pm 3$.
Nếu $x=-3y$ thì:
$x^4y^4=81$
$\Rightarrow (xy)^2=9$
$\Rightarrow (-3y.y)^2=9\Rightarrow y^4=1\Rightarrow y=\pm 1\Rightarrow x=-3y=\mp 3$.
Bài làm:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{2401}{144}+\frac{961}{144}\)
\(\Leftrightarrow2x=\frac{1681}{72}\)
\(\Rightarrow x=\frac{1681}{144}\)
=> \(y^2=\frac{1681}{144}+\frac{961}{144}=\frac{2642}{144}\)
=> \(y=\pm\frac{\sqrt{2642}}{12}\)
a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2
= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12
b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x
Vậy đa thức A(x) không có nghiệm.
c) Tìm được P(x) = -2x + 3
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
Thôi tiện t giúp luôn =)
Vì f(1) = g(-1) nên
\(1+2m+m^2=1+\left(-1\right)\left(2m+1\right)+m^2\)
\(\Leftrightarrow m^2+2m+1=1-2m-1+m^2\)
\(\Leftrightarrow4m=-1\)
\(\Leftrightarrow m=-\frac{1}{4}\)
2x+2-2x=768
=>2xx22-2x=768
=>2x(4-1)=768
=>2x=768:3=256
=>2x=28
=>x=8