Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sửa lại đề tí, ax5x2 chắc gõ nhầm :)
ax5y2 - 3x3y + 7x3y + ax5y2
= 2ax5y2 + 4x3y
Ta có: 2ax5y2 có bậc là 7, 4x3y có bậc là 4
Mà bậc của đa thức trên là 4
\(\Rightarrow\) 2ax5y2 = 0 \(\Rightarrow\) a = 0
Vậy a = 0 thì đa thức ax5y2 - 3x3y + 7x3y + ax5y2 có bậc là 4
Chúc bn học tốt!
Bài 1:
A = 3x^4 +5x^2y^2 + 2y^4 + 2y^2
A = 3x^4 + 3x^2y^2 + 2x^2y^2 + 2y^4 + 2y^2
A = 3x^2. ( x^2 + y^2) + 2y^2.( x^2 + y^2) + 2y^2
A = 3x^2.( x^2 + y^2) + 2y^2 . ( x^2 + y^2 + 1)
Thay x^2 + y^2 = 2 vào A
\(A=3x^2.2+2y^2.\left(2+1\right)\)
\(A=6x^2+6y^2\)
\(A=6.\left(x^2+y^2\right)\)
\(A=6.2\)
\(A=12\)
b) ta có: \(3x^4\ge0;x^2\ge0;2018>0\)
\(\Rightarrow3x^4+x^2+2018>0\)
=> A(x) không có nghiệm
1, 3x2.(-2y)3 = [3.(-2)](x2.y3) = -6x2y3
Hệ số: -6
phần biến: x2y3
bậc của đơn thức: 5
2,a, \(P=4x^4y^2+\frac{5}{6}+3x^3y^5-3x^4y^2+4y^3-\frac{1}{3}x^3y^5-x^4y^2\)
\(=\left(4x^4y^2-3x^4y^4-x^4y^4\right)+\left(3x^3y^5-\frac{1}{3}x^3y^5\right)+\frac{5}{6}+4y^3\)
\(=\frac{8}{3}x^3y^5+\frac{5}{6}+4y^3\)
b, bậc cua đa thức P là 8
c, Thay x = 2, y = 0,5 vào P ta được
\(P=\frac{8}{3}.2^3.\left(0,5\right)^5+\frac{5}{6}+4.\left(0,5\right)^3\)
\(=\frac{8}{3}.8.\frac{1}{32}+\frac{5}{6}+4.\frac{1}{8}\)
\(=\frac{2}{3}+\frac{5}{6}+\frac{1}{2}\)
\(=2\)
Câu 4:
\(\left(x+1\right)^2\left(y-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0-1=-1\\y=0+6=6\end{matrix}\right.\)
Vậy: biểu thức trên bằng 0 khi có x = -1 hoặc y = 6
Bài 5:
\(P=3x^4+5x^2y^2+2x^4+2y^2\)
\(=3x^2x^2+3x^2y^2+2x^2y^2+2x^4+2y^2\)
\(=3x^2\left(x^2+y^2\right)+2x^2\left(y^2+x^2\right)+2y^2\)
\(=3x^22+2x^22+2y^2\)
\(=6x^2+4x^2+2y^2\)
\(=10x^2+2y^2\)
P/s: Hình như đề câu cuối bị nhầm thì phải!
1. a) \(-4-3x^2\Leftrightarrow-3x^2=4\)
Ta thấy \(x^2\ge0\) với mọi \(x\in Z\)
\(\Rightarrow\) \(-3x^2\le0\) với mọi \(x\in Z\) mà \(4>0\) ( vô lý )
Vậy.......
ĐK : \(\left(x;y\ne0\right)\)
P = axy3 - 3x2y + 2y2 - 3xy3 + 1
= (axy3 - 3xy3) - 3x2y + 2y2 + 1
= xy3(a - 3) - 3x2y + 2y2 + 1
Vì -3x2y có bậc 3 ; 2y2 có bậc 2 ; 1 có bậc 0 <=>
=> xy3(a - 3) có bậc 4 khi a \(\ne\) 3
mà a là số nguyên tố nhỏ hơn 5
=> \(a\in\left\{2;3\right\}\)
mà a \(\ne\) 3 => a = 2
Vậy a = 2
Đăng từng bài thoy nha pn!!!
Bài 1:
Có : 2009 = 2008 + 1 = x + 1
Thay 2009 = x + 1 vào biểu thức trên,ta có :
x\(^5\)- 2009x\(^4\)+ 2009x\(^3\)- 2009x\(^2\)+ 2009x - 2010
= x\(^5\)- (x + 1)x\(^4\)+ (x + 1)x\(^3\)- (x +1)x\(^2\)+ (x + 1) x - (x + 1 + 1)
= x\(^5\)- x\(^5\)- x\(^4\)+ x\(^4\)- x\(^3\)+ x\(^3\)- x\(^2\)+ x\(^2\)+ x - x -1 - 1
= -2
a) A = 3x4 + 5x2y2 + 2y4 + 2y2 = 3x2(x2 + y2) + 2y2(x2 + y2) +2y2
= 3x2.2 + 2y2.2 + 2y2 = 6x2 + 6y2 = 6(x2 + y2) = 6.2 = 12
b) Ta thấy x4 ≥ 0; x2 ≥ 0. => 3x4 + x2 + 2018 > 0 với mọi x
Vậy đa thức A(x) không có nghiệm.
c) Tìm được P(x) = -2x + 3
cảm ơn Nguyển Huy Bảo An nha!!!