Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)
\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)
\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)
\(P=\dfrac{2}{2x+1}\)
b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)
\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)
c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)
Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)
+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)
+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)
+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)
Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)
Ta có :
\(\left|x-\frac{2}{3}\right|< \frac{1}{3}\)
\(\Leftrightarrow\)\(\frac{-1}{3}< x-\frac{2}{3}< \frac{1}{3}\)
\(\Leftrightarrow\)\(\frac{-1}{3}+\frac{2}{3}< x-\frac{2}{3}+\frac{2}{3}< \frac{1}{3}+\frac{2}{3}\) ( cộng 3 vế cho \(\frac{2}{3}\) )
\(\Leftrightarrow\)\(\frac{1}{3}< x< 1\)
Vậy \(\frac{1}{3}< x< 1\)
Chúc bạn học tốt ~
\(b)\) \(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^{2010}.\left(2x-1\right)^2=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{2}{2}\\x=\frac{0}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=1\)
Chúc bạn học tốt ~
x=-1/6