K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2018

Bài 2:

a, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}-\dfrac{3x+1}{1-x^2}\right):\dfrac{2x+1}{x^2-1}\)

\(P=\left(\dfrac{x-1}{x+1}-\dfrac{x}{x-1}+\dfrac{3x+1}{x^2-1}\right).\dfrac{x^2-1}{2x+1}\)

\(P=\dfrac{\left(x-1\right)^2-x\left(x+1\right)+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{x^2-2x+1-x^2-x+3x+1}{\left(x-1\right)\left(x+1\right)}.\dfrac{\left(x-1\right)\left(x+1\right)}{2x+1}\)

\(P=\dfrac{2}{2x+1}\)

b, ĐKXĐ: \(x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P=\dfrac{3}{x-1}\Leftrightarrow\dfrac{2}{2x+1}=\dfrac{3}{x-1}\Leftrightarrow2\left(x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow2x-2=6x+3\)\(\Leftrightarrow-4x=5\Leftrightarrow x=\dfrac{-5}{4}\)(TMĐK)

c, \(ĐKXĐ:x\ne\pm1;x\ne\dfrac{-1}{2}\)

Để \(P\in Z\Leftrightarrow\dfrac{2}{2x+1}\in Z\Leftrightarrow2x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

+) Với \(2x+1=1\Leftrightarrow x=0\left(TMĐK\right)\)

+) Với \(2x+1=-1\Leftrightarrow x=-1\left(KTMĐK\right)\)

+) Với \(2x+1=2\Leftrightarrow x=\dfrac{1}{2}\left(TMĐK\right)\)

+) Với \(2x+1=-2\Leftrightarrow x=\dfrac{-3}{2}\left(TMĐK\right)\)

Vậy để \(P\in Z\Leftrightarrow x\in\left\{0;\dfrac{1}{2};\dfrac{-3}{2}\right\}\)

Bài 1: 

a: \(P=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)

\(=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)

\(=\dfrac{-2x}{1}\cdot\dfrac{x-1}{4}=-\dfrac{x\left(x-1\right)}{2}\)

b: Để \(\dfrac{P-4}{5}=x\) thì P-4=5x

=>P=5x+4

\(\Leftrightarrow-\dfrac{x\left(x-1\right)}{2}=5x+4\)

=>-x2+x=10x+8

=>x2-x=-10x-8

=>x2+9x+8=0

=>x=-8(nhận) hoặc x=-1(loại)

25 tháng 12 2018

a)Q=\(\dfrac{1+x}{x}\)

b)x không tính được hoặc đề sai

c)?

12 tháng 12 2022

a: \(Q=\dfrac{1+x}{x\left(x+1\right)}\cdot\dfrac{x+1}{1}=\dfrac{x+1}{x}\)

b: Để Q=1 thì x+1=x(loại)

c: \(Q-\dfrac{1}{2}=\dfrac{x+1}{x}-\dfrac{1}{2}=\dfrac{2x+2-x}{2x}=\dfrac{x+2}{2x}\)

TH1: x>0 hoặc x<-2

=>Q>0

TH2: -2<x<0

=>Q<0

16 tháng 12 2022

a: \(P=\dfrac{a+3}{a}\cdot\dfrac{a^2-9-6a+18}{\left(a-3\right)\left(a+3\right)}\)

\(=\dfrac{\left(a-3\right)^2}{a\left(a-3\right)}=\dfrac{a-3}{a}\)

b: Để P=-2 thì -2a=a-3

=>-3a=-3

=>a=1

c: Để P nguyên thì a-3 chia hết cho a

=>-3 chia hết cho a

mà a<>0; a<>3; a<>-3

nên \(a\in\left\{1;-1\right\}\)

24 tháng 12 2018

a) Điều kiện xác định :

x ≠ 3; x ≠ -3; x ≠ 0

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\): ( \(\dfrac{x}{x\left(x-3\right)}\) - \(\dfrac{x-3}{x\left(x-3\right)}\) )

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\) : ( \(\dfrac{x-x+3}{x\left(x-3\right)}\) )

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{1}{x+3}\) : \(\dfrac{3}{x\left(x-3\right)}\)

M = \(\dfrac{x}{x^2-9}\) - \(\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\) = \(\dfrac{x}{\left(x-3\right)\left(x+3\right)}\) - \(\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\)

M = \(\dfrac{3x}{3\left(x-3\right)\left(x+3\right)}\) - \(\dfrac{x\left(x-3\right)^2}{3\left(x-3\right)\left(x+3\right)}\)

M = \(\dfrac{3x-x\left(x-3\right)^2}{3\left(x-3\right)\left(x+3\right)}\) = \(\dfrac{3x-x\left(x^2-6x+9\right)}{3\left(x-3\right)\left(x+3\right)}\)

M = \(\dfrac{3x-x^3+6x^2-9x}{3\left(x-3\right)\left(x+3\right)}\) = \(\dfrac{-x^3+6x^2-6x}{3\left(x-3\right)\left(x+3\right)}\)

Mk đang mệt sai thì bạn thông cảm cho mk.

12 tháng 12 2022

a: \(M=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}:\dfrac{x-x+3}{x\left(x-3\right)}\)

\(=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{1}{x+3}\cdot\dfrac{x\left(x-3\right)}{3}\)

\(=\dfrac{x}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{3\left(x+3\right)}\)

\(=\dfrac{3x-x\left(x^2-6x+9\right)}{3\left(x-3\right)\left(x+3\right)}\)

\(=\dfrac{3x-x^3+6x^2-9x}{3\left(x-3\right)\left(x+3\right)}=\dfrac{-x^3+6x^2-6x}{3\left(x-3\right)\left(x+3\right)}\)

b: Để M>1/2 thì M-1/2>0

=>\(\dfrac{-x^3+6x^2-6x}{3\left(x^2-9\right)}-\dfrac{1}{2}>0\)

=>\(\dfrac{-2x^3+12x^2-12x-3x^2+9}{6\left(x^2-9\right)}>0\)

=>\(\dfrac{-2x^3+9x^2-12x+9}{x^2-9}>0\)

TH1: \(\left\{{}\begin{matrix}-2x^3+9x^2-12x+9>0\\x^2-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 3\\\left[{}\begin{matrix}x>3\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x< -3\)

TH2: \(\left\{{}\begin{matrix}-2x^3+9x^2-12x+9< 0\\x^2-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>3\\-3< x< 3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)

3 tháng 12 2017

Có sai đề ko

3 tháng 12 2017

ko

22 tháng 11 2017

giup minh voi cac ban

16 tháng 8 2018

\(a.\dfrac{2x-1}{x-1}+\dfrac{x}{x^2-3x+2}=\dfrac{6x-2}{x-2}\left(x\ne2;x\ne1\right)\)

\(\Leftrightarrow\dfrac{\left(2x-1\right)\left(x-2\right)+x}{\left(x-1\right)\left(x-2\right)}=\dfrac{\left(6x-2\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}\)

\(\Leftrightarrow2x^2-4x-x+2+x=6x^2-6x-2x+2\)

\(\Leftrightarrow2x^2-5x+2=6x^2-8x+2\)

\(\Leftrightarrow4x^2-3x=0\)

\(\Leftrightarrow x\left(4x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{3}{4}\left(TM\right)\end{matrix}\right.\)

KL........

\(b.A=\sqrt{x^2-x+1\dfrac{1}{4}}-2016=\sqrt{x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+1}-2016=\sqrt{\left(x-\dfrac{1}{2}\right)^2+1}-2016\ge1-2016=-2015\)

\(\Rightarrow A_{Min}=-2015."="\Leftrightarrow x=\dfrac{1}{2}\)

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2