Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-11x^2+30x=0\)
\(\left(x-6\right).\left(x-5\right).x=0\)
\(=>\orbr{\begin{cases}x-6=0\\x-5=0,x=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=6\\x=5,x=0\end{cases}}\)
P/S: mk mới lớp 7 sai sót mong bỏ qua
\(8x^2+30x+7=0\)
\(8x^2+28x+2x+7=0\)
\(2x.\left(4x+1\right)+7.\left(4x+1\right)=0\)
\(\left(2x+7\right).\left(4x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=-7\\4x=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
vậy ....
P/S sorry mk làm hơi lâu :)__chờ tí làm câu a cho
\(x^2+3x-18=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}}\)
\(8x^2+30x+7=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)\left(x+\frac{7}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{4}=0\\x+\frac{7}{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=-\frac{7}{2}\end{cases}}}\)
\(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}}\)hoặc \(x=0\)
\(x^2+3x-18=x^2-3x+6x-18=x\left(x-3\right)+6\left(x-3\right)=\left(x-2\right)\left(x+6\right)\)
a) \(8x^2+30x+7=0\)
\(\Leftrightarrow8\left(x^2+\frac{15}{4}x+7\right)=0\)
\(\Leftrightarrow x^2+\frac{1}{4}x+\frac{7}{2}x+\frac{7}{8}=0\)
\(\Leftrightarrow x\left(x+\frac{1}{4}\right)+\frac{7}{2}\left(x+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)\left(x+\frac{7}{2}\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+\frac{1}{4}=0\\x+\frac{7}{2}=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{4}\\x=-\frac{7}{2}\end{array}\right.\)
b)\(x^3-11x^2+30x=0\)
\(\Leftrightarrow x\left(x^2-11x+30\right)=0\)
\(\Leftrightarrow x\left(x^2-5x-6x+30\right)=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\)
\(\Leftrightarrow x\left(x-5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\\x-6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\\x=6\end{array}\right.\)
a/ x2 + 3x - 18 = 0
x2 -3x + 6x - 18 = 0
x(x-3) + 6(x-3) = 0
(x-3)(x+6) = 0
Suy ra: x - 3 = 0 hoặc x + 6 = 0
hay x = 3 hoặc x = - 6
Vậy x thuộc {3;-6}.
b/ 8x2 + 30x + 7 = 0
8x2 + 2x + 28x + 7 = 0
2x(4x+1) + 7(4x+1) = 0
(4x+1)(2x+7) = 0
Suy ra: 4x + 1 = 0 hoặc 2x + 7 = 0
hay x = -1/4 hoặc x = -7/2
Vậy x thuộc {-1/4; -7/2}.
c/ x3 - 11x2 + 30x = 0
x(x2 - 11x + 30) = 0
x(x2 - 5x - 6x + 30) = 0
x.[x(x-5) - 6(x-5)] = 0
x(x-5)(x-6) = 0
Suy ra: x = 0; x - 5 = 0 hoặc x - 6 = 0
hay x = 0; x =5; x =6
Vậy x thuộc {0;5;6}.
a) \(2x^2+5x-18\)
\(=2x^2-4x+9x-18\)
\(=2x\left(x-2\right)+9\left(x-2\right)\)
\(=\left(x-2\right)\left(2x+9\right)\)
b) \(4x^2-17x+15\)
\(=4x^2-12x-5x+15\)
\(=4x\left(x-3\right)-5\left(x-3\right)\)
\(=\left(x-3\right)\left(4x-5\right)\)
c) \(-8x^2+10x+7\)
\(=-8x^2-4x+14x+7\)
\(=-4x\left(2x+1\right)+7\left(2x+1\right)\)
\(=\left(2x+1\right)\left(-4x+7\right)\)
d) \(7x^2-30x+8\)
\(=7x^2-28x-2x+8\)
\(=7x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(7x-2\right)\)
e) \(-x^3+11x^2-30x\)
\(=x\left(-x^2+11x-30\right)\)
\(=x\left(-x^2+5x+6x-30\right)\)
\(=x\left[-x\left(x-5\right)+6\left(x-5\right)\right]\)
\(=x\left(x-5\right)\left(-x+6\right)\)
a) 2x\(^2\) + 5x - 18 = 2x\(^2\) + 9x - 4x - 18 = x(2x + 9) - 2(2x + 9) = (x-2)(2x-9)
b) 4x\(^2\) - 17x - 15 = 4x\(^2\) + 20x - 3x - 15 = 4x(x + 5 ) - 3(x + 5) = (4x - 3 )(x + 5)
c) -8x\(^2\) + 10x + 7 = -8x\(^2\) + 14x - 4x + 7 =-2x(4x - 7) - (4x - 7) = (-2x - 1)(4x - 7)
d) 7x\(^2\) - 30x + 8 = 7x\(^2\) + 2x + 28x + 8 = x(7x + 2) + 4(7x + 2) = (x + 4)(7x + 2)
e) - x\(^3\) + 11x\(^2\) - 30x = -x(x\(^2\) - 11x + 30) = -x(x\(^2\) - 5x - 6x + 30) = -x\(\left[x\left(x-5\right)-6\left(x-5\right)\right]\) = -x(x-6)(x-5)
a) \(8x^2+30x+7=0\)
\(\Rightarrow8x^2+2x+28x+7=0\)
\(\Rightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Rightarrow\left(2x+7\right)\left(4x+1\right)=0\)
\(\Rightarrow\)\(2x+7=0\) hoặc \(4x+1=0\)
\(\Rightarrow\)\(2x=-7\) ; \(4x=-1\)
\(\Rightarrow\)\(x=\frac{-7}{2}\) ; \(x=\frac{-1}{4}\)
Vậy \(x\in\left\{\frac{-7}{2};\frac{-1}{4}\right\}\)
b) \(x^3-11x^2+30x=0\)
\(\Rightarrow x\left(x^2-11x+30\right)=0\)
\(\Rightarrow x\left(x^2-6x-5x+30\right)=0\)
\(\Rightarrow x\left[x\left(x-6\right)-5\left(x-6\right)\right]=0\)
\(\Rightarrow x\left(x-5\right)\left(x-6\right)=0\)
\(\Rightarrow\)\(x=0\) hoặc \(x-5=0\) hoặc \(x-6=0\)
\(\Rightarrow\)\(x=0\) ; \(x=5\) ; \(x=6\)
Vậy \(x\in\left\{0;5;6\right\}\)
a)\(8x^2+30x+7=0\Leftrightarrow8x^2+2x+28x+7=0\Leftrightarrow2x\left(4x+1\right)+7\left(4x+1\right)=0\)
\(\Leftrightarrow\left(2x+7\right)\left(4x+1\right)=0\Leftrightarrow\orbr{\begin{cases}2x+7=0\\4x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
b)\(x^3-11x^2+30x=0\Leftrightarrow x\left(x^2-11x+30\right)=0\Leftrightarrow x\left(x^2-5x-6x+30\right)=0\)
\(\Leftrightarrow x\left[x\left(x-5\right)-6\left(x-5\right)\right]=0\Leftrightarrow x\left(x-6\right)\left(x-5\right)=0\)
<=>x=0 hoặc x-6=0 hoặc x-5=0 <=> x=0 hoặc x=6 hoặc x=5
a)
\(x^3-7x-6=x^3-x-6x-6\)
\(=x(x^2-1)-6(x+1)\)
\(=x(x-1)(x+1)-6(x+1)=(x+1)[x(x-1)-6]\)
\(=(x+1)(x^2-x-6)=(x+1)[x^2-3x+2x-6]\)
\(=(x+1)[x(x-3)+2(x-3)]=(x+1)(x+2)(x-3)\)
b) \(x^3-6x^2+8x\)
\(=x(x^2-6x+8)\)
\(=x(x^2-4x-2x+8)\)
\(=x[x(x-4)-2(x-4)]=x(x-2)(x-4)\)
c) \(x^4+2x^3-16x^2-2x+15\)
\(=(x^4+2x^3-x^2-2x)-15x^2+15\)
\(=[(x^4-x^2)+(2x^3-2x)]-15(x^2-1)\)
\(=[x^2(x^2-1)+2x(x^2-1)]-15(x^2-1)\)
\(=(x^2-1)(x^2+2x)-15(x^2-1)=(x^2-1)(x^2+2x-15)\)
\(=(x^2-1)(x^2-3x+5x-15)=(x^2-1)[x(x-3)+5(x-3)]\)
\(=(x^2-1)(x+5)(x-3)=(x-1)(x+1)(x+5)(x-3)\)
d)
\(x^3-11x^2+30x=x(x^2-11x+30)\)
\(=x(x^2-5x-6x+30)\)
\(=x[x(x-5)-6(x-5)]=x(x-6)(x-5)\)
a)1-6x2-x =0<=>-(6x2+x-1)=0<=>6x2+x-1=0
<=>(6x2+3x)-(2x+1)=0<=>3x(2x+1)-(2x+1)=0
<=>(3x-1)(2x+1)=0
=>3x-1=0 hoặc 2x+1=0=>x=\(\dfrac13\) hoặc x=-\(\dfrac12\)
Vậy S={\(\dfrac13\);-\(\dfrac12\)}
b)12x2+13x+3=0<=>12x2+9x+4x+3=0<=>(12x2+9x)+(4x+3)=0
<=>3x(4x+3)+(4x+3)=0<=>(3x+1)(4x+3)=0
=>3x+1=0 hoặc 4x+3=0 <=>x=-\(\dfrac13 \) hoặc x=-\(\dfrac34\)
Vậy S={-\(\dfrac13 \);-\(\dfrac34 \)}
c)x3-11x2+30x=0<=>x(x2-11x+30)=0<=>x[(x2-6x)-(5x-30)]=0
<=>x[x(x-6)-5(x-6)]=0<=>x(x-5)(x-6)=0
=>x=0 hoặc x-5=0 hoặc x-6=0=>x=0 hoặc x=5 hoặc x=6
Vậy S={0;5;6}
d)Ta có:(x2+x+1)(x2+x+2)-12=0
Đặt:t=x2+x+1
Khi đó:a(a+1)-12=0<=>a2+a-12=0<=>(a2+4a)-(3a+12)=0
<=>a(a+4)-3(a+4)=0<=>(a-3)(a+4)=0
hay (x2+x-2)(x2+x+5)=0
<=>(x-1)(x+2)(x2+x+5)=0(x2+x-2=(x-1)(x+2))
=>x-1=0 hoặc x+2=0(vì x2+x+5=(x+\(\dfrac12\))2+\(\dfrac{19}{4}\)>0)
=>x=1 hoặc x=-2
Vậy S={1;-2}
e)Ta có:2x2+x+6>x2+x+6=(x+\(\dfrac12\))2+\(\dfrac{23}{4}\)>0
nên PT vô nghiệm
Vậy S=\(\varnothing\)
b) 8x2 + 30x + 7 = 0
8x2 + 16x + 14x + 7 = 0
8x.(x+2) + 7.(x+2) = 0
(x+2).(8x+7) = 0
..
bn tự làm tiếp nhé! ^-^
c) x3 - 11x2 + 30x = 0
x.(x2 - 11x +30) = 0
\(x.\left(x^2-5x-6x+30\right)=0.\)
x.[ x.(x-5) - 6.(x-5) ] = 0
x.(x-5).(x-6) = 0
...