Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9\)
\(\Rightarrow\left(x+2\right)^2=3^2\)
\(\Rightarrow x+2=3\)
\(\Rightarrow x=3-2=1\)
a) ( x + 2 )2 = 9
=> ( x + 2 ) 2 = 9
=> ( x + 2 )2 = 32
=> x + 2 = + 3
=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
Vậy x = -1; 5
b) ( x + 2 )2 - x2 + 4 = 0
=> ( x + 2 )2 - ( x2 - 4 ) = 0
=> ( x + 2 )2 - ( x + 2 ) ( x - 2 ) = 0
=> ( x + 2 ) ( x + 2 - x + 2 ) = 0
=> ( x + 2 ) . 4 = 0
=> x + 2 = 0
=> x = - 2
Vậy x = - 2
c) 5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 ) = - 10
=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10
=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10
=> - 70x + 280 = - 10
=> - 70x = - 290
=> x = \(\frac{29}{7}\)
Vậy x = \(\frac{29}{7}\)
d) x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3
=> x ( x2 - 25 ) - ( x3 - 8 ) = 3
=> x3 - 25x - x3 + 8 = 3
=> - 25x + 8 = 3
=> - 25x = -5
=> x = \(\frac{1}{5}\)
Vậy x = \(\frac{1}{5}\)
a) \(25x^2-9=0\)
\(\Leftrightarrow\left(5x\right)^2-3^2=0\)
\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)
Vậy \(S=\left\{\frac{3}{5};\frac{-3}{5}\right\}\)
b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-x^2+1=16\)
\(\Leftrightarrow8x+17=16\)
\(\Leftrightarrow8x=-1\)
\(\Leftrightarrow x=-\frac{1}{8}\)
Vậy.........
c)\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+6x+9\right)-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow2x=-255\)
\(\Leftrightarrow x=-127,5\)
Vậy.............
có j sai xót mong m.n bỏ qua☺
a) \(25x^2-9=0\)
<=> \(\left(5x\right)^2=9\)
<=> \(\left(5x\right)^2=3^2\)
<=> \(5x=3\)
<=> \(x=\frac{3}{5}\)
b) \(\left(x+4\right)^2-\left(x-1\right)\left(x+1\right)=16\)
<=> \(x^2+2.x.4+4^2-\left(x^2-1^2\right)=16\)
<=> \(x^2+8x+16-x^2+1=16\)
<=> \(\left(x^2-x^2\right)+8x+\left(16+1\right)=16\)
<=> \(8x+17=16\)
<=> \(8x=-1\)
<=> \(x=\frac{-1}{8}\)
c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
<=> \(\left(2x\right)^2-2.2x.1+1^2+x^2+2.x.3+3^2-5\left(x^2-7^2\right)=0\)
<=> \(4x^2-4x+1+x^2+6x+9-5x^2+5.7^2=0\)
<=> \(\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+5.7^2\right)=0\)
<=> \(2x+245=0\)
<=> \(2x=-245\)
<=> \(x=\frac{-245}{2}\)
a) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\Leftrightarrow x=\frac{3}{2}\)
b) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(25-4x^2\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)+\left(5-2x\right)\left(5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(2x+7+5+2x\right)=0\)
\(\Leftrightarrow\left(5-2x\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-3\end{array}\right.\)
c)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=0\\x=2\end{array}\right.\)
d) \(4\left(2x+7\right)^2-9\left(x+3\right)^2=0\)
\(\Leftrightarrow\left[2\left(2x+7\right)-3\left(x+3\right)\right]\left[2\left(2x+7\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(4x+14-3x-9\right)\left(4x+14+3x+9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=-\frac{23}{17}\end{array}\right.\)
a) \(\left(x+2\right)^2-\left(x+4\right)^2=0\)
\(\Rightarrow\left(x+2-x-4\right)\left(x+2+x+4\right)=0\)
\(\Rightarrow\left(-2\right)\left(2x+6\right)=0\)
\(\Rightarrow\left(-2\right).2.\left(x+3\right)=0\)
\(\Rightarrow x+3=0\) (vì \(-4\ne0\) )
\(\Rightarrow x=-3\)
Vậy \(x=-3\) (câu này mk có sửa đề ko biết có đúng ko !!!)
b) \(\left(x-3\right)^2-9=0\Rightarrow\left(x-3\right)^2=9\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=3^2\\\left(x-3\right)^2=\left(-3\right)^2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=6\\x=0\end{matrix}\right.\)
Vậy \(x=6\) hoặc \(x=0\)
c) \(x^2+6x+9=0\Rightarrow\left(x+3\right)^2=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
Vậy \(x=-3\)
d) \(-x^3+9x^2-27x+27=0\)
\(\Rightarrow-\left(x^3-9x^2+27x-27\right)=0\)
\(\Rightarrow-\left(x-3\right)^3=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
Bài 1:
a) \(\left(2x+3\right)\cdot\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-3=27-3=24\)
--> đpcm
b) Sửa đề: \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)
\(=x^3+9x^2+27x+27-\left(x^3+27x+9x^2+243\right)\)
\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)
--> đpcm
c) \(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)
\(=x^3+y^3+x^3-y^3-2x^3=2x^3-2x^3=0\)
--> đpcm
B1: a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)
\(=8x^3-27-8x^3+2\)
\(=-25\)
b) c) Làm theo câu a áp dụng HĐT.
B2:
a) \(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2+3\right)\left(x+2-3\right)=0\)
\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-5\\x=1\end{matrix}\right..\)
Mấy câu b,c,d bn chịu khó tạo HĐT nhé.
e) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=-\dfrac{255}{2}\)
Vậy \(x=-\dfrac{255}{2}\)
Bài 1:
a: Để B có nghĩa thì \(x^4-10x^2+9< >0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+3\right)\left(x+1\right)< >0\)
hay \(x\notin\left\{3;1;-3;-1\right\}\)
b: \(B=0\) khi \(x^4-5x^2+4=0\)
=>(x-2)(x+2)=0
hay \(x\in\left\{2;-2\right\}\)
a) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=27\)
\(\Rightarrow x^3+3^3-x\left(x^2-4\right)=27\)
\(\Rightarrow x^3+27-x^3+4x=27\)
\(\Rightarrow27+4x=27\)
\(\Rightarrow4x=0\)
\(\Rightarrow x=0\)
b) \(2x^2+7x+3=0\)
\(\Rightarrow2x^2+x+6x+3=0\)
\(\Rightarrow x\left(2x+1\right)+3\left(2x+1\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
a, x(x-2)-3(2-x)=0
<=> x2-2x-6+3x=0
<=> x2+x-6=0
<=> x.(x+1)=6
<=> x.(x+1)=2.3=(-2).(-3)
Vậy x=2 hoạc x=-2
b, (x+4)2-9=0
<=> (x+4-3)(x+4+3)=0
<=> (x+1).(x+7)=0
<=> \(\orbr{\begin{cases}x+1=0\\x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-7\end{cases}}\)
a) x(x - 2) - 3(2 - x) = 0
\(\Leftrightarrow\)(x - 2)(x + 3) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy..........
b) (x + 4)2 - 9 = 0
\(\Leftrightarrow\)(x + 4 + 3)(x + 4 - 3) = 0
\(\Leftrightarrow\)(x + 7)(x + 1) = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+7=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-7\\x=-1\end{cases}}\)
Vậy .........