K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

a) \(25x^2-9=0\)

\(\Leftrightarrow\left(5x\right)^2-3^2=0\)

\(\Leftrightarrow\left(5x+3\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-3=0\\5x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=-\frac{3}{5}\end{cases}}\)

Vậy \(S=\left\{\frac{3}{5};\frac{-3}{5}\right\}\)

b) \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow\left(x^2+8x+16\right)-\left(x^2-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-x^2+1=16\)

\(\Leftrightarrow8x+17=16\)

\(\Leftrightarrow8x=-1\)

\(\Leftrightarrow x=-\frac{1}{8}\)

Vậy.........

c)\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left(4x^2-4x+1\right)+\left(x^2+6x+9\right)-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow2x=-255\)

\(\Leftrightarrow x=-127,5\)

Vậy.............

có j sai xót mong m.n bỏ qua☺

19 tháng 7 2018

a) \(25x^2-9=0\)                      

<=> \(\left(5x\right)^2=9\)

<=> \(\left(5x\right)^2=3^2\)

<=> \(5x=3\)

<=> \(x=\frac{3}{5}\)

b) \(\left(x+4\right)^2-\left(x-1\right)\left(x+1\right)=16\)

<=> \(x^2+2.x.4+4^2-\left(x^2-1^2\right)=16\)

<=> \(x^2+8x+16-x^2+1=16\)

<=> \(\left(x^2-x^2\right)+8x+\left(16+1\right)=16\)

<=> \(8x+17=16\)

<=> \(8x=-1\)

<=> \(x=\frac{-1}{8}\)

c) \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

<=> \(\left(2x\right)^2-2.2x.1+1^2+x^2+2.x.3+3^2-5\left(x^2-7^2\right)=0\)

<=> \(4x^2-4x+1+x^2+6x+9-5x^2+5.7^2=0\)

<=> \(\left(4x^2+x^2-5x^2\right)-\left(4x-6x\right)+\left(1+9+5.7^2\right)=0\)

<=> \(2x+245=0\)

<=> \(2x=-245\)

<=> \(x=\frac{-245}{2}\)

3 tháng 10 2018

a,\((x+4)^2-(x+1)(x-1)=16\)

 \(\Rightarrow x^2+8x+16-x^2+1=16\)

\(\Rightarrow 8x=-1\Rightarrow x=-\dfrac{1}{8}\)

b,\((2x-1)^2-(x+3)^2-5(x+7)(x-7)=0\)

\(\Rightarrow 4x^2-4x+1-(x^2+6x+9)-5(x^2-49)=0\)

\(\Rightarrow 4x^2-4x+1-x^2-6x-9-5x^2-245=0\)

\(\Rightarrow -x^2-10x-244=0\)

\(\Rightarrow -(x^2-10x+25)-219=0\)

\(\Rightarrow -(x-5)^2-219=0\)

\(\Rightarrow (x-5)^2+219=0\)

Mà \((x-5)^2+219>0\) suy ra PT vô nghiệm

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

11 tháng 9 2020

a, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)

\(\Leftrightarrow x^2+8x+16-\left(x^2-x+x-1\right)=16\)

\(\Leftrightarrow8x+1=0\Leftrightarrow x=-\frac{1}{8}\)

b, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)

\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{225}{2}\)

11 tháng 9 2020

c, \(\left(x+2\right)\left(x-2\right)-x^3-2x=15\)

\(\Leftrightarrow x^2-4-x^3-2x=15\)( vô nghiệm )

d, \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)

\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3+1=28\)

\(\Leftrightarrow15x^2+26=0\Leftrightarrow x^2\ne-\frac{26}{15}\)( vô nghiệm )

Tính nhẩm hết á, sai bỏ quá nhá, sắp đi hc ... nên chất lượng hơi kém xíu ~~~ 

27 tháng 7 2017

\(b,\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\) \(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)\(\Leftrightarrow2x=-255\Rightarrow x=-\dfrac{255}{2}\)

\(c,\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6x^2+12x+6-49=0\)\(\Leftrightarrow24x=-13\Rightarrow x=-\dfrac{13}{24}\)

\(d,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow-2x=23\Rightarrow x=-\dfrac{23}{2}\)

27 tháng 7 2017

T.Thùy Ninh sai câu d nha \(-2x+8=15\)

\(-2x=15-8\)

\(-2x=7\)

\(x=\dfrac{-7}{2}=-3,5\)

4 tháng 10 2017

Bài 1:

a) \(\left(2x+3\right)\cdot\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-3=27-3=24\)

--> đpcm

b) Sửa đề: \(\left(x+3\right)^3-\left(x+9\right)\left(x^2+27\right)\)

\(=x^3+9x^2+27x+27-\left(x^3+27x+9x^2+243\right)\)

\(=x^3+9x^2+27x+27-x^3-27x-9x^2-243=27-243=-216\)

--> đpcm

c) \(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)

\(=x^3+y^3+x^3-y^3-2x^3=2x^3-2x^3=0\)

--> đpcm

4 tháng 10 2017

B1: a) \(\left(2x+3\right)\left(4x^2-6x+9\right)-2\left(4x^3-1\right)\)

\(=8x^3-27-8x^3+2\)

\(=-25\)

b) c) Làm theo câu a áp dụng HĐT.

B2:

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2+3\right)\left(x+2-3\right)=0\)

\(\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=1\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=-5\\x=1\end{matrix}\right..\)

Mấy câu b,c,d bn chịu khó tạo HĐT nhé.

e) \(\Rightarrow4x^2-4x+1+x^2+6x+9-5x^2+245=0\)

\(\Rightarrow2x=-255\)

\(\Rightarrow x=-\dfrac{255}{2}\)

Vậy \(x=-\dfrac{255}{2}\)

24 tháng 3 2020

a, - Đặt \(x^2+x=a\) ta được phương trình :\(a^2+4a-12=0\)

=> \(a^2-2a+6a-12=0\)

=> \(a\left(a-2\right)+6\left(a-2\right)=0\)

=> \(\left(a+6\right)\left(a-2\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-2=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=2\\a=-6\end{matrix}\right.\)

- Thay lại \(x^2+x=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2+x=2\\x^2+x=-6\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+6=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{23}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{9}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{23}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{9}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{9}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{9}{4}}-\frac{1}{2}=1\\x=-\sqrt{\frac{9}{4}}-\frac{1}{2}=-2\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{1,-2\right\}\)

b, Đặt \(x^2+2x+3=a\) -> làm tương tự câu a .

c, Ta có : \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

=> \(\left(x^2-4\right)\left(x^2-10\right)=72\)

- Đặt \(x^2-4=a\)\(x^2-10=a-6\) ta được phương trình :

\(a\left(a-6\right)=72\)

=> \(a^2-6a-72=0\)

=> \(a^2+6a-12a-72=0\)

=> \(a\left(a+6\right)-12\left(a+6\right)=0\)

=> \(\left(a+6\right)\left(a-12\right)=0\)

=> \(\left[{}\begin{matrix}a+6=0\\a-12=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}a=-6\\a=12\end{matrix}\right.\)

- Thay lại \(x^2-4=a\) vào phương trình trên ta được :\(\left[{}\begin{matrix}x^2-4=-6\\x^2-4=12\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2=-2\left(VL\right)\\x^2=16\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{16}=4\\x=-\sqrt{16}=-4\end{matrix}\right.\)

Vậy phương trình trên có nghiệm là \(S=\left\{4,-4\right\}\)

d, Ta có : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

=> \(\left(x^2+x\right)\left(x^2+x+1\right)=42\)

- Đặt \(x^2+x=a\) ta được phương trình : \(a\left(a+1\right)=42\)

=> \(a^2+a-42=0\)

=> \(a^2+7a-6a-42=0\)

=> \(a\left(a+7\right)-6\left(a+7\right)=0\)

=> \(\left(a-6\right)\left(a+7\right)=0\)

=> \(\left[{}\begin{matrix}a=6\\a=-7\end{matrix}\right.\)

- Thay \(a=x^2+x\) vào phương trình ta được : \(\left[{}\begin{matrix}x^2+x=6\\x^2+x=-7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x^2+x-6=0\\x^2+x+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\\\left(x+\frac{1}{2}\right)^2+\frac{27}{4}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\left(x+\frac{1}{2}\right)^2=\frac{25}{4}\\\left(x+\frac{1}{2}\right)^2=-\frac{27}{4}\left(VL\right)\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x+\frac{1}{2}=\sqrt{\frac{25}{4}}\\x+\frac{1}{2}=-\sqrt{\frac{25}{4}}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\sqrt{\frac{25}{4}}-\frac{1}{2}=2\\x=-\sqrt{\frac{25}{4}}-\frac{1}{2}=-3\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{2;-3\right\}\)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé