Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
Bài 1:
- \(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)
- \(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1
-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)
- \(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)
\(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))
\(x\) = \(\dfrac{3}{14}\)
Vậy \(x=\dfrac{3}{14}\)
Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1
2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)
- 5\(x\) = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\)
- 5\(x\) = \(\dfrac{7}{6}\)
\(x\) = \(\dfrac{7}{6}\) : (- 5)
\(x\) = - \(\dfrac{7}{30}\)
Vậy \(x=-\dfrac{7}{30}\)
a) 2x - 5 = 3 + 2x - 7x
=> 2x - 2x + 7x = 3 +5
=> 7x = 8
=> x = 8/7
b) \(\left(2x-1\right)^2=\left(2x-1\right)^5\)
=> \(\left(2x-1\right)^2-\left(2x-1\right)^5=0\)
=> \(\left(2x-1\right)^2\left[1-\left(2x-1\right)^3\right]=0\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\1-\left(2x-1\right)^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^3=1\end{cases}}\)
=> \(\orbr{\begin{cases}2x=1\\2x-1=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=2\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=1\end{cases}}\)
a.
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=16\)
\(6x^2+21x-2x-7-6x^2+5x-6x+5=16\)
\(\left(6x^2-6x^2\right)+\left(21x-2x+5x-6x\right)-\left(7-5\right)=16\)
\(18x-2=16\)
\(18x=16+2\)
\(18x=18\)
\(x=\frac{18}{18}\)
\(x=1\)
b.
\(\left(10x+9\right)x-\left(5x-1\right)\left(2x+3\right)=8\)
\(10x^2+9x-10x^2-15x+2x+3=8\)
\(\left(10x^2-10x^2\right)-\left(15x-9x-2x\right)+3=8\)
\(-4x=8-3\)
\(-4x=5\)
\(x=-\frac{5}{4}\)
c.
\(\left(3x-5\right)\left(7-5x\right)+\left(5x+2\right)\left(3x-2\right)-2=0\)
\(21x-15x^2-35+25x+15x^2-10x+6x-4-2=0\)
\(\left(15x^2-15x^2\right)+\left(25x+21x-10x+6x\right)-\left(35+4+2\right)=0\)
\(42x=41\)
\(x=\frac{41}{42}\)
\(E=5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x+105\)
\(=\left(5x^7+10x^6-20x^5-35x^4+20x^3-5x^2+40x\right)+105\)
\(=5x\left(x^6+2x^5-4x^4-7x^3+4x^2-x+8\right)+105\)
Thay \(x^6+2x^5-4x^4-7x^3+4x^2-x+8=0\)vào đa thức ta được:
\(E=5x.0+105=105\)
a) 6x(5x + 3) + 3x(1 – 10x) = 7
⇒ 30x2+18x+3x-30x2=7
⇒21x=7
⇒x=\(\dfrac{7}{21}\)
⇒x= \(\dfrac{1}{3}\)
b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
⇒15x-63x2-15+63x + 63x2-35x+36x-20=44
⇒79x-35=44
⇒79x=44+35
⇒79x=79
⇒x=1
a) \(\dfrac{3x-4}{2x+5}=\dfrac{3x+7}{2x-20}\left(đk:x\ne-\dfrac{5}{2},x\ne10\right)\)
\(\Rightarrow\left(3x-4\right)\left(2x-20\right)=\left(3x+7\right)\left(2x+5\right)\)
\(\Rightarrow6x^2-68x+80=6x^2+29x+35\)
\(\Rightarrow97x=45\Rightarrow x=\dfrac{45}{97}\)
b) \(\dfrac{10x-5}{7x+2}=\dfrac{50x+10}{35x-29}\left(đk:x\ne-\dfrac{2}{7},x\ne\dfrac{29}{35}\right)\)
\(\Rightarrow\left(10x-5\right)\left(35x-29\right)=\left(50x+10\right)\left(7x+2\right)\)
\(\Rightarrow350x^2-465x+145=350x^2+170x+20\)
\(\Rightarrow635x=125\Rightarrow x=\dfrac{25}{127}\)