K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TC
Thầy Cao Đô
Giáo viên VIP
19 tháng 12 2022

$4x^3 + x = 4x^2$

$\Leftrightarrow x(4x^2 - 4x + 1) = 0$

$\Leftrightarrow x(2x - 1)^2 = 0$

$\Leftrightarrow \left[\begin{aligned}&x = 0\\ &2x - 1 = 0\\ \end{aligned}\right. \Leftrightarrow \left[\begin{aligned}&x = 0\\ &x = \dfrac12\\ \end{aligned}\right.$

3 tháng 2 2018

x4+4x3-4x2-48x-48=0

=> x4+4(x3-x2) - 48x = 48

=> x4 + 4[x2(x-1)] - 48x = 48 

3 tháng 2 2018

     \(x^4+4x^3-4x^2-48x-48=0\)

\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)

\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)

\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)

\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)

Ta có:   \(x^2+6x+12=\left(x+3\right)^2+3>0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)      

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)

Vậy...

18 tháng 9 2018

Bài 1:

a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)

\(114x^2+216x+81=114x^2-480x+400\)

\(144x^2+216x=144x^2-480x+400-81\)

\(114x^2+216=114x^2-480x+319\)

\(696x=319\)

\(\Rightarrow x=\frac{11}{24}\)

b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)

\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)

\(\Rightarrow x=1\)

c) \(x^5+x^4+x^3+x^2+x+1=0\)

\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow x=-1\)

Bài 2:

a) \(5x^3-7x^2-15x+21=0\)

\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)

\(\Rightarrow x=\frac{7}{5}\)

b) \(\left(x-3\right)^2=4x^2-20x+25\)

\(x^2-6x+9-25=4x^2-20x+25\)

\(x^2-6x+9=4x^2-20x+25-25\)

\(x^2-6x-16=4x^2-20x\)

\(x^2+14x-16=4x^2-4x^2\)

\(-3x^2+14x-16=0\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)

\(x^2-2x=x-4\)

\(x^2-2x=x-4+4\)

\(x^2-2x=x-x\)

\(x^2-3x=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)

\(-48x^2+56x-24=-24\)

\(-48x^2+56x=-24+24\)

\(-48x^2+56=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)

mình ko chắc

Bài 1

A, 11/24

B, -1

chúc bn học tốt

25 tháng 7 2017

\(a.\left(x+1\right)\left(x^2-x+1\right)-x\left(x^2-5\right)=71\)

\(\Leftrightarrow x^3+1-x^3+5x=71\)

\(\Leftrightarrow5x=71-1\)

\(\Leftrightarrow5x=70\)

\(\Leftrightarrow x=70:5=14\)

\(b.\left(2x-3\right)^3-8x\left(x-1\right)^2+4x\left(4x+1\right)+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x\left(x^2-2x+1\right)+16x^2+4x+27=0\)

\(\Leftrightarrow8x^3-12x^2+18x-27-8x^3+16x^2-8x+16x^2+4x+27=0\)

\(\Leftrightarrow20x^2+14x=0\)

\(\Leftrightarrow x\left(20x+14\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\20x+14=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{7}{10}\end{cases}}}\)

25 tháng 7 2017

a) ta có: (x+1)(x^2 -x+1) -x(x^2 -5)=71

          <=>x^3 +1 -x^3 +5x=71

         <=>5x=70

         <=>x=14

b) ta có:(2x-3)^3 -8x(x-1)^2 +4x(4x+1)+27=0

        <=>[ (2x-3)^3  +27)]  -  [ 8x(x-1)^2  -4x(4x+1)]=0

       <=> (2x-3+3)[ (2x-3)^2 - (2x-3).3  +3^2]   - 2x [ 4(x^2 -2x +1) -2(4x+1)]=0

       <=>2x( 4.x^2 - 12x +9 - 6x +9 +9)   -  2x( 4.x^2 -8x+4 -8x -2)=0

       <=>2x(4.x^2  -18x +27)  -  2x(4.x^2 -16x +2)=0

      <=>2x(4.x^2 -18x+27 -4.x^2 +16x-2)=0

     <=>2x(25-2x)=0

<=>x=0 hoặc 25-2x=0 <=> x=0 hoặc x=25/2

18 tháng 12 2016

x+4x2+4x3=0

x+2x2+2x2+4x3=0

x(1+2x)+2x2(1+2x)=0

(1+2x)(x+2x2)=0

x(1+2x)(1+2x)=0

\(\Rightarrow\hept{\begin{cases}x=0\\1+2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}}\)

24 tháng 9 2020

            Bài làm :

a) x( 2x - 7 ) - 4x + 14 = 0

<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0

<=> ( 2x - 7 )( x - 2 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

b) Sửa đề : 5x3 + x2 - 4x + 9 = 0

<=>( 5x3 + 5 ) + (x2 - 4x +4)=0

<=> 5(x3 + 1) + (x-2)2 = 0

<=> 5(x+1)(x2 - x +1) + (x+2)2 =0

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)

c) 3x3 - 7x2 + 6x - 14 = 0

<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0

<=> ( x - 7/3 )( 3x2 + 6 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)

d) 5x2 - 5x = 3( x - 1 )

<=> 5x( x - 1 ) - 3( x - 1 ) = 0

<=> ( x - 1 )( 5x - 3 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

e) 4x2 - 25 - ( 4x - 10 ) = 0

<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0

<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0

<=> ( 2x - 5 )( 2x + 3 ) = 0

 \(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)

f) x3 + 27 + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0

<=> ( x + 3 )( x2 - 2x ) = 0

<=> x( x + 3 )( x - 2 ) = 0

\(\Leftrightarrow\orbr{\begin{cases}\\\end{cases}}\begin{cases}x=0\\x=-3\\x=2\end{cases}\)

24 tháng 9 2020

a) x( 2x - 7 ) - 4x + 14 = 0

<=> x( 2x - 7 ) - 2( 2x - 7 ) = 0

<=> ( 2x - 7 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}2x-7=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=2\end{cases}}\)

b) 5x3 + x2 - 4x - 9 = 0 ( đề sai )

c) 3x3 - 7x2 + 6x - 14 = 0

<=> 3x2( x - 7/3 ) + 6( x - 7/3 ) = 0

<=> ( x - 7/3 )( 3x2 + 6 ) = 0

<=> \(\orbr{\begin{cases}x-\frac{7}{3}=0\\3x^2+6=0\end{cases}}\Leftrightarrow x=\frac{7}{3}\)( do 3x2 + 6 ≥ 6 > 0 với mọi x )

d) 5x2 - 5x = 3( x - 1 )

<=> 5x( x - 1 ) - 3( x - 1 ) = 0

<=> ( x - 1 )( 5x - 3 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\5x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{3}{5}\end{cases}}\)

e) 4x2 - 25 - ( 4x - 10 ) = 0

<=> ( 2x - 5 )( 2x + 5 ) - 2( 2x - 5 ) = 0

<=> ( 2x - 5 )( 2x + 5 - 2 ) = 0

<=> ( 2x - 5 )( 2x + 3 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\2x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}\)

f) x3 + 27 + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 ) + ( x + 3 )( x - 9 ) = 0

<=> ( x + 3 )( x2 - 3x + 9 + x - 9 ) = 0

<=> ( x + 3 )( x2 - 2x ) = 0

<=> x( x + 3 )( x - 2 ) = 0

<=> x = 0 hoặc x + 3 = 0 hoặc x - 2 = 0

<=> x = 0 hoặc x = -3 hoặc x = 2

22 tháng 8 2017

b, ( x+ x ) ( x+ x + 1 )=6

=> ( x+ x ) ( x+ x + 1) - 6 = 0

=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0

=> x - 1= 0 => x= 1

=> x + 2 = 0 => x = -2

=>  x + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )

Vậy x = 1; x= -2

21 tháng 11 2017

a) \(2x^3-x^2+3x+6=0\)

\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)

\(x^2\left(2-x\right)-3\left(2-x\right)=0\)

\(\left(x^2-3\right)\left(2-x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)

           vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)