Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4x2 - 5x + 1 = 0
4x2 - 4x - x + 1 = 0
4x ( x - 1 ) - ( x - 1 ) = 0
( 4x - 1 ) ( x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=1\end{cases}}\)
1. So sánh :
Ta có :
340 = ( 34 )10 = 8110
430 = ( 43 )10 = 6410
Vì 8110 > 6410 nên 340 > 430
a) ta có : (x-5)\(^2\) =x-5
\(\Rightarrow\)(x-5)\(^2\) - (x-5)=0
\(\Rightarrow\)(x-5)(x-6)=0
\(\Rightarrow\)\(\orbr{\begin{cases}x-5=0\\x-6=0\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
Bài 3:
\(\Leftrightarrow3^{2x+6}=3\)
=>2x+6=1
=>2x=-5
hay x=-5/2
\(B=4y^2+4y+5\)
\(=\left[\left(2y\right)^2+2.2y.1+1^2\right]+4\)
Vậy \(\left(2y+1\right)^2\ge0\)
\(\Rightarrow\left(2y+1\right)^2+4\ge4\)
Vậy GTNN là 4
Khi x = -1/2
1: \(B=4y^2+4y+5=\left(2y\right)^2+2\cdot y\cdot2+2^2+1=\left(2y+2\right)^2+1\)
Để B min
Suy ra \(\left(2y+2\right)^2+1\)min
Mà \(\left(2y+2\right)^2\ge0\)
Suy ra \(\left(2y+2\right)^2+1\ge1\)
Vậy B min = 1
2: \(M=-x^2-4x=-x^2-2\cdot x\cdot2-4+4=-\left(x^2+2\cdot x\cdot2+2^2\right)+4=-\left(x+2\right)^2+4\)
Để M max
Suy ra \(-\left(x+2\right)^2+4\)max
Mà \(-\left(x+2\right)^2\le0\)
Suy ra\(-\left(x+2\right)^2+4\text{}\le4\)
Vậy M max = 4
X2(x+2)+4(x+2)=0
=>(x2+4)(x+2)=0
=>x2+4=0 hoặc x+2=0
=>x2=-4 hoặc x=-2
Mà x2 phải ra kết quả là số dương
suy ra x=-2
\(x^2\left(x+2\right)+4\left(x+2\right)=0\)
\(\Rightarrow\left(x^2+4\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+4=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-4\\x=-2\end{cases}}}\)
mà \(x^2\ge0\Rightarrow x=-2\)