Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn chú ý gõ đề bằng công thức toán (hộp biểu tượng $\sum$) trên thanh công cụ. Nhìn đề rối mắt thế này thật tình không ai muốn đọc chứ đừng nói đến giúp =)))
a: ĐKXĐ; 1-sin x>=0
=>sin x<=1(luôn đúng)
b: ĐKXĐ: 1-cosx>=0
=>cosx<=1(luôn đúng)
c: ĐKXĐ: 1-cos2x>=0
=>cos2x<=1
=>-1<=cosx<=1(luôn đúng)
ĐKXĐ:
a. \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\)
b. \(sinx\ne1\Leftrightarrow x\ne\frac{\pi}{2}+k2\pi\)
c. Hàm luôn xác định với mọi x
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
1. Không dịch được đề
2.
\(-1\le cos2x\le1\Rightarrow1\le y\le3\)
3.
a. \(-2\le2sinx\le2\Rightarrow-1\le y\le3\)
\(y_{min}=-1\) khi \(sinx=-1\Rightarrow x=-\dfrac{\pi}{2}+k2\pi\)
\(y_{max}=3\) khi \(sinx=1\Rightarrow x=\dfrac{\pi}{2}+k2\pi\)
b.
\(0\le cos^2x\le1\Rightarrow-1\le y\le2\)
\(y_{min}=-1\) khi \(cos^2x=1\Rightarrow x=k\pi\)
\(y_{max}=2\) khi \(cosx=0\Rightarrow x=\dfrac{\pi}{2}+k\pi\)
4.
\(y=\left(tanx-1\right)^2+2\ge2\)
\(y_{min}=2\) khi \(tanx=1\Rightarrow x=\dfrac{\pi}{4}+k\pi\)
b: \(y=\dfrac{1}{2}\sin4x-1\)
\(-1< =\sin4x< =1\)
\(\Leftrightarrow-\dfrac{1}{2}< =\dfrac{1}{2}\cdot\sin4x< =\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{3}{2}< =\dfrac{1}{2}\cdot\sin4x-1< =-\dfrac{1}{2}\)
Do đó: \(y_{max}=\dfrac{-1}{2}\) khi \(4x=\dfrac{\Pi}{2}+k\Pi\)
hay \(x=\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)
\(y_{min}=\dfrac{-3}{2}\) khi \(4x=-\dfrac{\Pi}{2}+k\Pi\)
hay \(x=-\dfrac{\Pi}{8}+\dfrac{k\Pi}{4}\)
g: \(0>=-2\left|\cos x\right|>=-2\)
\(\Leftrightarrow5>=-2\left|\cos x\right|+5>=3\)
Do đó: \(y_{max}=5\) khi \(\)\(\cos x=0\)
hay \(x=\dfrac{\Pi}{2}+k\Pi\)
\(y_{min}=3\) khi \(\cos x=-1\)
hay \(x=-\Pi+k2\Pi\)
1.
Hàm số xác định khi \(\left\{{}\begin{matrix}\dfrac{1+x}{1-x}\ge0\\1-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x< 1\\x\ne1\end{matrix}\right.\Leftrightarrow-1\le x< 1\)
2.
Hàm số xác định khi \(cosx+1\ne0\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne-\pi+k2\pi\)
3.
Hàm số xác định khi \(cosx-cos3x\ne0\Leftrightarrow sin2x.sinx\ne0\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{k\pi}{2}\end{matrix}\right.\)
Khi rõ ra bạn.