K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 9 2020

ĐKXĐ:

a. \(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\)

b. \(sinx\ne1\Leftrightarrow x\ne\frac{\pi}{2}+k2\pi\)

c. Hàm luôn xác định với mọi x

14 tháng 9 2020

Em quên ghi yêu cầu mất. Đề bài yêu cầu tìm TXĐ anh ạ.

NV
17 tháng 9 2020

c/

\(\left(1+cosx\right)\left(sinx-cosx+3\right)=1-cos^2x\)

\(\Leftrightarrow\left(1+cosx\right)\left(sinx-cosx+3\right)-\left(1+cosx\right)\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1+cosx\right)\left(sinx+2\right)=0\)

\(\Leftrightarrow cosx=-1\)

\(\Leftrightarrow x=\pi+k2\pi\)

d.

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)=1-sin^2x\)

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-sinx\right)-\left(1+sinx\right)\left(1-sinx\right)=0\)

\(\Leftrightarrow\left(1+sinx\right)\left(cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=k2\pi\end{matrix}\right.\)

NV
17 tháng 9 2020

a.

\(\Leftrightarrow cosx\left[1-\left(1-2sin^2x\right)\right]-sin^2x=0\)

\(\Leftrightarrow2sin^2x.cosx-sin^2x=0\)

\(\Leftrightarrow sin^2x\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cosx=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

b.

Câu b chắc chắn đề đúng chứ bạn? Vế phải ấy?

NV
8 tháng 9 2020

a/ \(y=2\left(\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx\right)+5=2sin\left(x-\frac{\pi}{6}\right)+5\)

Do \(-1\le sin\left(x-\frac{\pi}{6}\right)\le1\Rightarrow3\le y\le7\)

b/ \(y=2cos\left(x+\frac{\pi}{6}\right)cos\left(-\frac{\pi}{6}\right)=\sqrt{3}cos\left(x+\frac{\pi}{6}\right)\)

Do \(-1\le cos\left(x+\frac{\pi}{6}\right)\le1\Rightarrow-\sqrt{3}\le y\le\sqrt{3}\)

c/ \(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+12=2sin\left(x+\frac{\pi}{3}\right)+12\)

Do \(-1\le sin\left(x+\frac{\pi}{3}\right)\le1\Rightarrow10\le y\le14\)

NV
22 tháng 9 2019

a/ ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\sinx\ne-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k2\pi\\x\ne-\frac{\pi}{6}+k2\pi\\x\ne\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(1+sinx-2sin^2x\right)\)

\(\Leftrightarrow cosx-sin2x=\sqrt{3}\left(cos2x+sinx\right)\)

\(\Leftrightarrow\sqrt{3}sinx-cosx=sin2x+\sqrt{3}cos2x\)

\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx-\frac{1}{2}cosx=\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{3}\right)=sin\left(2x+\frac{\pi}{6}\right)\)

\(\Leftrightarrow...\)

b/ ĐKXĐ: \(cosx+\sqrt{3}sinx\ne0\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)\ne0\Rightarrow...\)

Đặt \(cosx+\sqrt{3}sinx=2sin\left(x+\frac{\pi}{6}\right)=a\) với \(-2\le a\le2\):

\(a=\frac{3}{a}+1\Leftrightarrow a^2-a-3=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\frac{1+\sqrt{13}}{2}>2\left(l\right)\\a=\frac{1-\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow2sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{2}\)

\(\Rightarrow sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{13}}{4}=sin\alpha\)

\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=\alpha+k2\pi\\x+\frac{\pi}{6}=\pi-\alpha+k2\pi\end{matrix}\right.\) \(\Rightarrow x=...\)

NV
22 tháng 7 2020

d/

ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow\frac{sin\left(3x-x\right)}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sin2x}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{2sinx.cosx}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\)

\(\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

NV
22 tháng 7 2020

c/

ĐKXĐ: \(sin2x\ne0\)

\(\Leftrightarrow\frac{\frac{sinx}{cosx}-sinx}{sin^3x}=\frac{1}{cosx}\)

\(\Leftrightarrow sinx-sinx.cosx=sin^3x\)

\(\Leftrightarrow1-cosx=sin^2x\)

\(\Leftrightarrow1-cosx=1-cos^2x\)

\(\Leftrightarrow cos^2x-cosx=0\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\)

NV
11 tháng 8 2020

2.

a. ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)

Miền xác định đối xứng

\(f\left(-x\right)=\frac{-x+tan\left(-x\right)}{\left(-x\right)^2+1}=\frac{-x-tanx}{x^2+1}=-\frac{x+tanx}{x^2+1}=-f\left(x\right)\)

Hàm lẻ

b. \(f\left(-x\right)=\frac{5\left(-x\right).cos\left(-5x\right)}{sin^2\left(-x\right)+2}=\frac{-5x.cos5x}{sin^2x+2}=-f\left(x\right)\)

Hàm lẻ

c. \(f\left(-x\right)=\left(-2x-3\right)sin\left(-4x\right)=\left(2x+3\right)sin4x\)

Hàm không chẵn không lẻ

d. \(f\left(-x\right)=sin^4\left(-2x\right)+cos^4\left(-2x-\frac{\pi}{6}\right)\)

\(=sin^42x+cos^4\left(2x+\frac{\pi}{6}\right)\)

Hàm ko chẵn ko lẻ

NV
11 tháng 8 2020

1. ĐKXĐ:

a.

\(cos\left(x-\frac{\pi}{4}\right)\ne0\)

\(\Leftrightarrow x-\frac{\pi}{4}\ne\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x\ne\frac{3\pi}{4}+k\pi\)

b.

\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)

c.

Hàm xác định trên R

d.

\(cosx\ne0\Leftrightarrow x\ne\frac{\pi}{2}+k\pi\)

NV
18 tháng 6 2019

ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne1\\cosx\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{2}+k2\pi\\x\ne k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\frac{1-sin^2x}{1-sinx}=\frac{1-cos^2x}{1-cosx}\)

\(\Leftrightarrow\frac{\left(1-sinx\right)\left(1+sinx\right)}{1-sinx}=\frac{\left(1-cosx\right)\left(1+cosx\right)}{1-cosx}\)

\(\Leftrightarrow1+sinx=1+cosx\)

\(\Leftrightarrow sinx=cosx\Rightarrow x=\frac{\pi}{4}+k\pi\)

17 tháng 6 2019

Karry Angel đúng ko nè

ĐKXĐ: x≠kπ2x≠kπ2

⇔sinxcosx+cosxsinx=√2(sinx+cosx)⇔sinxcosx+cosxsinx=2(sinx+cosx)

⇔1sinx.cosx=√2(sinx+cosx)⇔(sinx+cosx)sinx.cosx=√22⇔1sinx.cosx=2(sinx+cosx)⇔(sinx+cosx)sinx.cosx=22

Đặt sinx+cosx=asinx+cosx=a (|a|≤√2)(|a|≤2)

⇒a2=1+2sinx.cox⇒sinx.cosx=a2−12⇒a2=1+2sinx.cox⇒sinx.cosx=a2−12 pt trở thành:

(a2−1)a=√2⇔a3−a−√2=0(a2−1)a=2⇔a3−a−2=0

⇔(a−√2)(a2+a√2+1)=0⇒a=√2⇔(a−2)(a2+a2+1)=0⇒a=2

⇒sinx+cosx=√2⇒√2sin(x+π4)=√2⇒sin(x+π4)=1