Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{2}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+\frac{10}{4}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}\)
\(\frac{A}{B}=10\)
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{2}{8}+\frac{1}{9}\)
Tách 9=1+1+...+1 ( có 9 số 1)
\(\Rightarrow A=1+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{2}{8}+1\right)+\left(\frac{1}{9}+1\right)\)
\(A=\frac{10}{10}+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{8}+\frac{10}{9}\)
\(A=10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)\)
\(\Rightarrow A:B=\frac{10.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}}=10\) ( vì \(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{10}\ne0\) )
Vậy \(A:B=10\)
a) Ta có: \(\dfrac{-5}{7}\left(\dfrac{14}{5}-\dfrac{7}{10}\right):\left|-\dfrac{2}{3}\right|-\dfrac{3}{4}\left(\dfrac{8}{9}+\dfrac{16}{3}\right)+\dfrac{10}{3}\left(\dfrac{1}{3}+\dfrac{1}{5}\right)\)
\(=\dfrac{-5}{7}\cdot\dfrac{3}{2}\cdot\dfrac{21}{10}-\dfrac{3}{4}\cdot\dfrac{56}{3}+\dfrac{10}{3}\cdot\dfrac{8}{15}\)
\(=\dfrac{-9}{4}-14+\dfrac{16}{9}\)
\(=\dfrac{-1621}{126}\)
b) Ta có: \(\dfrac{17}{-26}\cdot\left(\dfrac{1}{6}-\dfrac{5}{3}\right):\dfrac{17}{13}-\dfrac{20}{3}\left(\dfrac{2}{5}-\dfrac{1}{4}\right)+\dfrac{2}{3}\left(\dfrac{6}{5}-\dfrac{9}{2}\right)\)
\(=\dfrac{-17}{26}\cdot\dfrac{13}{17}\cdot\dfrac{-3}{2}-\dfrac{20}{3}\cdot\dfrac{3}{20}+\dfrac{2}{3}\cdot\dfrac{-33}{10}\)
\(=\dfrac{3}{4}-1-\dfrac{11}{5}\)
\(=-\dfrac{49}{20}\)
Bài 1:
a; \(\dfrac{7}{8}\) + \(x\) = \(\dfrac{4}{7}\)
\(x\) = \(\dfrac{4}{7}\) - \(\dfrac{7}{8}\)
\(x\) = \(\dfrac{32}{56}\) - \(\dfrac{49}{56}\)
\(x=-\) \(\dfrac{49}{56}\)
Vậy \(x=-\dfrac{49}{56}\)
b; 6 - \(x\) = - \(\dfrac{3}{4}\)
\(x\) = 6 + \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{24}{4}+\dfrac{3}{4}\)
\(x=\dfrac{27}{4}\)
Vậy \(x=\dfrac{27}{4}\)
c; \(\dfrac{1}{-5}\) + \(x\) = \(\dfrac{3}{4}\)
\(x\) = \(\dfrac{3}{4}\) + \(\dfrac{1}{5}\)
\(x=\dfrac{15}{20}\) + \(\dfrac{4}{20}\)
\(x=\dfrac{19}{20}\)
Vậy \(x=\dfrac{19}{20}\)
Bài 1:
d; - 6 - \(x\) = - \(\dfrac{3}{5}\)
\(x\) = - 6 + \(\dfrac{3}{5}\)
\(x=-\dfrac{30}{5}\) + \(\dfrac{3}{5}\)
\(x=-\dfrac{27}{5}\)
Vậy \(x=-\dfrac{27}{5}\)
e; - \(\dfrac{2}{6}\) + \(x\) = \(\dfrac{5}{7}\)
\(x\) = \(\dfrac{5}{7}\) + \(\dfrac{2}{6}\)
\(x\) = \(\dfrac{15}{21}\) + \(\dfrac{1}{3}\)
\(x=\dfrac{15}{21}\) + \(\dfrac{7}{21}\)
\(x=\dfrac{22}{21}\)
Vậy \(x=\dfrac{22}{21}\)
f; - 8 - \(x\) = - \(\dfrac{5}{3}\)
\(x\) = \(-\dfrac{5}{3}\) + 8
\(x\) = \(\dfrac{-5}{3}\) + \(\dfrac{24}{3}\)
\(x\) = \(\dfrac{-19}{3}\)
Vậy \(x=-\dfrac{19}{3}\)
\(\frac{1}{10\times9}-\frac{1}{9\times8}-\frac{1}{8\times7}-\frac{1}{7\times6}-\frac{1}{6\times5}-\frac{1}{5\times4}-\frac{1}{4\times3}-\frac{1}{3\times2}-\frac{1}{2\times1}\)
\(=\frac{1}{10\times9}-\left(\frac{1}{9\times8}+\frac{1}{8\times7}+\frac{1}{7\times6}+\frac{1}{6\times5}+\frac{1}{5\times4}+\frac{1}{4\times3}+\frac{1}{3\times2}+\frac{1}{2\times1}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\left(\frac{1}{1}-\frac{1}{9}\right)\)
\(=\frac{1}{90}-\frac{8}{9}\)
\(=-\frac{79}{90}\)
a, \(\frac{-3}{7}+\frac{5}{13}-\frac{4}{7}+\frac{8}{13}\)
\(=\frac{-3}{7}-\frac{4}{7}+\frac{5}{13}+\frac{8}{13}\)
\(=-\frac{7}{7}+\frac{13}{13}=-1+1=0\)
b, \(\frac{-5}{14}-\frac{2}{-14}+\frac{1}{8}+\frac{1}{8}\)
\(=\frac{-5}{14}+\frac{2}{14}+\frac{1}{8}+\frac{1}{8}\)
\(=-\frac{3}{14}+\frac{1}{4}=\frac{1}{28}\)
c,\(-\frac{5}{13}-\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)\)
\(=-\frac{5}{13}-\frac{3}{13}-\frac{3}{5}+\frac{4}{10}\)
\(=-\frac{8}{13}-\frac{3}{5}+\frac{4}{10}=-\frac{79}{65}+\frac{4}{10}=-\frac{53}{65}\)
d, \(\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{4}{6}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)
\(=\left[\left(\frac{1}{8}-\frac{9}{7}+\frac{2}{3}-\frac{12}{7}-\frac{1}{2}\right)+\frac{5}{9}\right]\)
\(=\left[\left(\frac{1}{8}-\frac{1}{2}-\frac{9}{7}-\frac{12}{7}+\frac{2}{3}\right)+\frac{5}{9}\right]\)
\(=-\frac{65}{24}+\frac{5}{9}=-2\frac{11}{72}\)
a)-3/7+5/13-4/7+8/13
=-3/7-4/7+5/13+8/13
=-7/7+13/13
=-1+1
=0
\(A=\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+\frac{6}{4}+\frac{5}{5}+\frac{4}{6}+\frac{3}{7}+\frac{2}{8}+\frac{1}{9}\)
\(=\left(9-1-1-...1\right)+\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)\)
\(=1+\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}=\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}\)
\(=10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}\right)=10B\)
vậy A:B=10