K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2022

không có cây trả lời

 

15 tháng 3 2020

đặt \(p^{2m}+q^{2m}=a^2\)

Xét p,q cùng lẻ thì \(p^{2m}\)chia 4 dư 1 ; \(q^{2m}\)chia 4 dư 1

\(\Rightarrow p^{2m}+q^{2m}\)chia 4 dư 2

\(\Rightarrow a^2\)chia 4 dư 2 ( vô lí vì SCP chia 4 ko thể dư 2 hoặc 3 )

\(\Rightarrow\)ít nhất 1 trong 2 số p,q có 1 số bằng 2

giả sử p = 2

\(\Rightarrow4^m=a^2-q^{2n}=\left(a-q^n\right)\left(a+q^n\right)\)

\(\Rightarrow\hept{\begin{cases}a-q^n=4^x\\a+q^n=4^y\end{cases}\Rightarrow2.q^n=4^y-4^x⋮4}\)

\(\Rightarrow q^n⋮2\)

\(\Rightarrow q⋮2\)

\(\Rightarrow q=2\)

Thay p = q = 2 vào, ta được :

\(4^m+4^n=a^2\)

giả sử \(m\ge n\)

Đặt \(m=n+z\)

Ta có : \(4^{n+z}+4^n=4^n\left(4^z+1\right)=a^2\)

vì \(4^n\)là số chính phương nên \(4^z+1\)là số chính phương

Dễ thấy \(4^z+1=\left(2^z\right)^2+1\)không là số chính phương nên suy ra phương trình vô nghiệm

24 tháng 3 2020

Đáp số nè: m=2, n=1, p=2, q=3 và các hoán vị.

Nếu ai cần thì cứ nhắn tin vs mik nha.

7 tháng 9 2019

1. 

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{pq}\)

<=> \(pq\left(x+y\right)=xy\)

Đặt: \(x=ta;y=tb\) với (a; b)=1

Ta có: \(pq.\left(a+b\right)=tab\)

<=> \(pq=\frac{t}{a+b}.ab\left(1\right)\)

 vì (a; b) =1 => a, b, a+b đôi một nguyên tố cùng nhau. (2)

(1); (2) => \(t⋮a+b\)

=> \(pq⋮ab\Rightarrow pq⋮a\)vì p; q là hai số nguyên tố nên \(a\in\left\{1;p;q;pq\right\}\)

 TH1: a=1 => \(pq⋮b\Rightarrow b\in\left\{1;p;q;pq\right\}\)

+) Khả năng 1: b=1 

(1) => \(t=2pq\)=> \(x=y=2pq\)( thỏa mãn)

+) Khả năng 2:  b=p

(1) => \(pq=\frac{t}{1+p}.p\Leftrightarrow t=\left(1+p\right)q=q+pq\)

=> \(x=at=q+pq;\)

\(y=at=pq+p^2q\)(tm)

+) Khả năng 3: b=q 

tương tự như trên

(1) => \(t=p\left(1+q\right)=p+pq\)

=> \(x=at=p+pq\)

\(y=bt=q\left(p+pq\right)=pq+pq^2\)

+) Khả năng 4: \(b=pq\)

(1) =>\(t=1+pq\)

=> \(x=1+pq;y=pq\left(1+pq\right)=1+p^2q^2\) 

 TH2\(a=p\)

=> \(q⋮b\Rightarrow\orbr{\begin{cases}b=1\\b=q\end{cases}}\)

+) KN1: \(b=1\)

Em làm tiếp nhé! Khá là dài

7 tháng 9 2019

2. \(x^4+4=p.y^4\)

+) Với x chẵn 

Đặt x=2m ( m thuộc Z)

=> \(16m^2+4=py^4\)

=> \(py^4⋮4\Rightarrow y^4⋮4\Rightarrow y^2⋮2\Rightarrow y⋮2\)=> Đặt y=2n ;n thuộc Z

Khi đó ta có:

\(16m^2+4=p.16n^2\Leftrightarrow4m^2+1=p.4n^2⋮4\)=> \(1⋮4\)( vô lí)

=> X chẵn loại

+) Với x lẻ

pt <=> \(x^4+4=py^4\)

<=> \(\left(x^2+2x+2\right)\left(x^2-2x+2\right)=py^4\)(i)

Gọi  \(\left(x^2+2x+2;x^2-2x+2\right)=d\)(1)

=> \(x^2+2x+2⋮d\)

    \(x^2-2x+2⋮d\)

=.> \(\left(x^2+2x+2\right)-\left(x^2-2x+2\right)=4x⋮d\)

Vì x lẻ => d lẻ 

=> \(x⋮d\)

=> \(2⋮d\Rightarrow d=1\)

Do đó: \(\left(2x^2+2x+2;2x^2-2x+2\right)=1\)(ii)

Từ (i) và (ii) có thể đặt: với \(ab=y^2\)sao cho:

 \(x^2+2x+2=pa^2;\)

\(x^2-2x+2=b^2\)<=> \(\left(x-1\right)^2+1=b^2\)\(\Leftrightarrow\left(x-1-b\right)\left(x-1+b\right)=-1\)

<=> x=b=1 hoặc x=1; b=-1

Với x=1 => a^2.p=5 => p=5  

12 tháng 3 2016

2. Ta có:

+) Nếu p = 2 => 2 + 10 = 12 (không là số nguyên tố), 2 + 14 = 16 (không là số nguyên tố) => loại p = 2

+) Nếu p = 3 => 3 + 10 = 13 (là số nguyên tố), 3 + 14 = 17 (là số nguyên tố) => chọn p = 3

+) Nếu p > 3 => p = 3k + 1. p = 3k + 2 (k \(\in\) N*)

=> p = 3k + 1 => p + 10 = 3k + 12 chia hết cho 3 => loại p = 3k + 1

=> p = 3k + 2 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 2.

Vậy p = 3.

12 tháng 3 2016

UCLN là gì

15 tháng 8 2018

+Nếu p = 2 ⇒ p + 2 = 4 (loại)
+Nếu p = 3 ⇒ p + 6 = 9 (loại)
+Nếu p = 5 ⇒ p + 2 = 7, p + 6 = 11, p + 8 = 13, p + 12 = 17, p + 14 = 19 (thỏa mãn)
+Nếu p > 5, ta có vì p là số nguyên tố nên ⇒ p không chia hết cho 5 ⇒ p = 5k+1, p = 5k+2, p = 5k+3, p = 5k+4
-Với p = 5k + 1, ta có: p + 14 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 2, ta có: p + 8 = 5k + 10 = 5 ( k+2 ) ⋮⋮ 5 (loại)
-Với p = 5k + 3, ta có: p + 12 = 5k + 15 = 5 ( k+3) ⋮⋮ 5 (loại)
-Với p = 5k + 4, ta có: p + 6 = 5k + 10 = 5 ( k+2) ⋮⋮ 5 (loại)
⇒ không có giá trị nguyên tố p lớn hơn 5 thỏa mãn
Vậy p = 5 là giá trị cần tìm

15 tháng 8 2018

cảm ơn bạn nhé

11 tháng 8 2016

Gọi CTHH là X2O, ta có:

  %X = 100% - 25,8% = 74,2%

  => \(\frac{2X}{74,2}\)\(\frac{16}{25,8}\)

  =>  2X . 25,8 = 74,2 . 16

  =>  2X . 25,8 = 1187,2

  =>  2X = 1187,2 : 25,8

  => 2X = \(\frac{5936}{129}\) 

  => X  = \(\frac{5936}{129}\): 2

  => X  \(\approx\)23

=> X là nguyên tử Na

11 tháng 8 2016

mình làm hên xui thôi, nếu đúng thí tíck cho mình nha