Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
a) Ta có : (n + 2)2 - (n - 2)2
= [(n + 2) + (n - 2)][(n + 2) - (n - 2)] (áp dụng hang đẳng thức a2 - b2 = (a + b) (a - b)
= 2n.4
= 8n
Mà n là số tự nhiên => 8n chia hết cho 8
Vậy (n + 2)2 - (n - 2)2 chia hết cho 8
Ta có : (n + 7)2 - (n - 5)2
= [(n + 7) + (n - 5)][(n + 7) - (n - 5]
= (2n + 2).12
= 2(n + 1).12
= 24(n + 1)
Mà n là số nguyên => 24(n + 1) chia hết cho 24
Vậy (n + 7)2 - (n - 5)2 chia hết cho 24
n2(n+1)+2n(n+1)=n(n+1)(n+2)
n+1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
n;n+1 và n+2 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3
=>n2(n+1)+2n(n+1) chia hết cho 2.3=6
\(4n^2\left(n+2\right)+4n\left(n+2\right)=\left(n+2\right)\left(4n^2+4n\right)=4n\left(n+1\right)\left(n+2\right)\)
Đặt \(A=n\left(n+1\right)\left(n+2\right)\) ta có
+ Nếu n chẵn => A chia hết cho 2
+ Nếu n lẻ thì n+1 chia hết cho 2 => A chia hết cho 2
=> A chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 1 thì n+2 chia hết cho 3 => A chia hết cho 3
+ Nếu n chia 3 dư 2 thì n+1 chia hết cho 3 => A chia hết cho 3
=> A chia hết cho 3 với mọi n
=> A đồng thời chia hết cho cả 2 và 3 với mọi n => A chia hết cho 6 với mọi n => A có thể biểu diễn thành A=6.k
=> 4A=4.6.k=24.k chia hết cho 24 (dpcm)
4n2(n+2)+4n(n+2)
=4n(n+2)(n+1)
Ta có: 24=2.3.4 và ƯCLN(2,3,4)=1 nên ta chứng minh 4n(n+2)(n+1) chia hết cho 2,3 và 4
n chia cho 2 sẽ có 2 dạng là 2k và 2k+1 (k\(\in\)Z)
+) Với n = 2k thì \(n⋮2\)=> 4n(n+1)(n+2)\(⋮2\)(1)
+) Với n = 2k+1 thì n+1=2k+2
Vì 2k+2\(⋮2\)nên 4n(n+1)(n+2)\(⋮2\)(2)
Từ (1) và (2) => 4n(n+1)(n+2)\(⋮\)2 với mọi n\(\in Z\)
n chia cho 3 có 3 dạng là: 3m+1, 3m+2 và 3m
+) Với n = 3m thì n\(⋮\)3 => 4n(n+1)(n+2)\(⋮\)3 (3)
+) với n = 3m+1 thì n+2=3m+1+2=3m+3
Vì 3m+3\(⋮3\) nên 4n(n+1)(n+2)\(⋮3\)(4)
+) Với n = 3m+2 thì n+1=3m+2+1=3m+3
Vì 3m+3\(⋮3\)nên 4n(n+1)(n+2)\(⋮3\)(5)
Từ (3)(4)(5) => 4n(n+1)(n+2)\(⋮3\)với mọi \(n\in Z\)
Vì 4\(⋮\)4 nên 4n(n+1)(n+2)\(⋮4\)
Ta có: 4n(n+1)(n+2) chia hết cho 2,3,4
=> 4n(n+1)(n+2) \(⋮24\)với mọi \(n\in Z\)
Vậy 4n2(n+2)+4n(n+2)\(⋮24\)với mọi\(n\in Z\)
Bài 2.
\(n^4-2n^3-n^2+2n=n\left(n^3-2n^2-n+2\right)=n\left[n^2\left(n-2\right)-\left(n-2\right)\right]\)
\(=n\left(n-2\right)\left(n^2-1\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
là tích của \(4\)số nguyên liên tiếp nên trong đó có ít nhất \(1\)thừa số chia hết cho \(4\), \(1\)thừa số chia hết cho \(3\), \(1\)thừa số chia hết cho \(2\)nhưng không chia hết cho \(4\)
do đó \(A\)chia hết cho \(2.3.4=24\).
Ta có đpcm.
Bài 1:
\(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2\left(x-2\right)^2=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\pm\sqrt{\frac{1}{2}}+2\end{cases}}\)