K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 8 2020

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x-cos4x-1=0\)

\(\Leftrightarrow\frac{1}{2}\left(cos2x+cos6x\right)+cos4x=0\)

\(\Leftrightarrow cos4x.cos2x+cos4x=0\)

\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=\frac{\pi}{2}+k\pi\\2x=\pi+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{8}+\frac{k\pi}{4}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)

NV
23 tháng 7 2020

\(\Leftrightarrow\frac{1-cos2x}{2}+\frac{1-cos6x}{2}-\left(1+cos4x\right)=0\)

\(\Leftrightarrow cos2x+cos6x+2cos4x=0\)

\(\Leftrightarrow2cos4x.cos2x+2cos4x=0\)

\(\Leftrightarrow cos4x\left(cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=0\\cos2x=-1\end{matrix}\right.\) \(\Leftrightarrow...\)

12 tháng 9 2016

a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)

\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)

\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)

\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)

\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)

\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)

\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)

\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)

12 tháng 9 2016

b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)

\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)

\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)

\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)

\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)

NV
4 tháng 10 2020

1.

\(\Leftrightarrow\left(1-cos6x\right)cos2x+1-cos2x=0\)

\(\Leftrightarrow cos2x-cos2x.cos6x+1-cos2x=0\)

\(\Leftrightarrow\frac{1}{2}\left(cos8x-cos4x\right)-1=0\)

\(\Leftrightarrow2cos^24x-cos4x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-1\\cos4x=\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow4x=\pi+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

NV
4 tháng 10 2020

3.

Đặt \(\frac{x}{6}=t\Rightarrow\frac{1}{4}+cos^22t=\frac{1}{2}sin^23t\)

\(\Leftrightarrow1+4cos^22t=1-cos6t\)

\(\Leftrightarrow cos6t+4cos^22t=0\)

\(\Leftrightarrow4cos^32t+4cos^22t-3cos2t=0\)

\(\Leftrightarrow cos2t\left(4cos^22t+4cos2t-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2t=0\\cos2t=\frac{1}{2}\\cos2t=-\frac{3}{2}\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\frac{\pi}{4}+\frac{k\pi}{2}\\t=\pm\frac{\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}=\frac{\pi}{4}+\frac{k\pi}{2}\\\frac{x}{3}=\frac{\pi}{6}+k\pi\\\frac{x}{3}=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

17 tháng 5 2017

Hàm số lượng giác, phương trình lượng giác

17 tháng 8 2019
https://i.imgur.com/BisGxxf.jpg
17 tháng 8 2019
https://i.imgur.com/onDIc4W.jpg
19 tháng 8 2019
https://i.imgur.com/KATLCup.jpg
19 tháng 8 2019
https://i.imgur.com/C3DgdmP.jpg
NV
6 tháng 9 2020

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos2x+\frac{1}{2}-\frac{1}{2}cos6x=\frac{1}{2}+\frac{1}{2}cos4x+\frac{1}{2}+\frac{1}{2}cos8x\)

\(\Leftrightarrow cos8x+cos2x+cos6x+cos4x=0\)

\(\Leftrightarrow2cos5x.cos3x+2cos5x.cosx=0\)

\(\Leftrightarrow cos5x\left(cos3x+cosx\right)=0\)

\(\Leftrightarrow2cos5x.cos2x.cosx=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos5x=0\\cos2x=0\\cosx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{10}+\frac{k\pi}{5}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{2}+k\pi\end{matrix}\right.\)