Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(x^3-2mx^2+2x^2-8x+8m-16=0\)
\(\Leftrightarrow\left(x^3+2x^2-8x-16\right)+m\left(-2x^2+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-8\right)-2m\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2-8-2m\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-2mx+4m-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2-2mx+4m-8=0\left(1\right)\end{matrix}\right.\)
Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác -2
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-2\right)^2+4m+4m-8=0\\\Delta'=m^2-4m+8>0\end{matrix}\right.\) (luôn thỏa mãn)
Vậy pt có 3 nghiệm pb với mọi m
b/ Do vai trò của \(x_1;x_2;x_3\) hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x_1=-2\) và \(x_2;x_3\) là 2 nghiệm của (1)
\(\Rightarrow\left\{{}\begin{matrix}x_2+x_3=2m\\x_2x_3=4m-8\end{matrix}\right.\) (2)
\(\left(-2\right)^2+\left(x_2+x_3\right)^2-2x_2x_3=5\left(-2+x_2+x_3\right)-4\) (3)
Thế (2) vào (3) là xong
Phương trình đã cho có nghiệm khi:
\(\Delta'=\left(m+1\right)^2-2\left(m^2+4m+3\right)=-m^2-6m-5\ge0\)
\(\Leftrightarrow-5\le m\le-1\)
Khi đó \(\left\{{}\begin{matrix}x_1+x_2=-m-1\\x_1.x_2=\frac{m^2+4m+3}{2}\end{matrix}\right.\)
\(A=|\frac{m^2+4m+3}{2}+2\left(m+1\right)|=\frac{1}{2}.|m^2+8m+7|\le\frac{1}{2}.|0|=0\)
\(\Rightarrow MaxA=0\Leftrightarrow m=-1\)
để pt có 2 nghiệm phân biệt thì: đenta > 0
mà ddeenta = m2 - 6m - 7 > 0
giải ra ta đc: m<-1 hay m>7 (1)
áp dụng hệ thức vi-et đc x1 + x2 = m-1 và x1.x2= m+2
kết 2 biểu thức trên dễ dàng làm đc x12 + x22 = m2-4m-3
bđt trên (=) (x12+x22)/x12.x22 - 1 > 0
thay vào đc (-16m -7)/(m2+4m+4) > 0 =) m khác -2 và m<-7/16
kết hợp vs (1) =) m<-1 và m khác -2