Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 36 = 9 . 4
Mà ƯC ( 9 ; 4 ) = 1
Vậy để 34x5y chia hết cho 36 thì 34x5y chia hết cho 4 và 9 .
Để số 34x5y chia hết cho 9 thì : ( 3 + 4 + x + 5 + y ) ⋮ 9
Hay : 12 + x + y ⋮ 9 (1)
Để số 34x5y chia hết cho 4 thì 5y ⋮ 4
=> y = 2 hoặc y = 6 .
Với y = 2 thay vào (1) ta được : 14 + x ⋮ 9 => x = 4
Với y = 6 thay vào (1) ta được : 18 + x ⋮ 9 => x = 0 hoặc x = 9
Vậy các cặp ( x ; y ) cần tìm là : ( 4 ; 2 ) ; ( 0 ; 6 ) ; ( 9 ; 6 )
1) Ta có 4x7y chia hết cho cả 2; 3; 5
Vì số chia hết cho cả 2 và 5 có tận cùng là 0
=> y = 0
Ta có: 4x70
Số chia hết cho 3 thì tổng các chữ số của nó chia hết cho 3
Ta có: 4 + 7 + 0 = 11
Mà 12 ; 18 chia hết cho 3
=> x = 12 - 11 = 1 ; x = 18 - 11 = 7
Đ/s: x = 1 ; 7 , y = 0
2) Ta có x > 10, 35
x = 11
3) Ta có: x < 8, 2
x = 8
\(3n+1⋮n-1\)
\(\Rightarrow3.\left(n-1\right)+4⋮n-1\)
Vì \(3.\left(n-1\right)⋮n-1\)=> \(4⋮n-1\)
Hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
Ta có bảng sau :
n-1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
Vậy ....
3n+13 chia hết cho n+1=> 3n+3+10 cg chia hết cho n+1=>3*(n+1)+10chia hết cho n+1=> 10 chia hết cho n+1=> tìm n
3.n+13 chia hết cho n
vì 3.n chia hết cho n
nên 3.n+13 chia hết cho n
khi 13chia hết cho n
suy ra n thuộc Ư(13)
suy ra n thuộc {1;13}
\(3n+13⋮n\)
\(\Rightarrow\hept{\begin{cases}3n+13⋮n\\3n⋮n\end{cases}}\)
\(\Rightarrow3n+13-3n⋮n\)
\(13⋮n\)
\(\Rightarrow n\inƯ\left(13\right)=\left\{1;13\right\}\)
Vậy \(n\in\left\{1;13\right\}\)
Số hạng có hai chữ số chia hết cho 9 là:
(99 - 18) : 9 + 1 = 10
Tổng là:
(18 + 99) . 10 : 2 = 5858
1)
Ta có:
x + 10 chia hết cho 5
10 chia hết cho 5
\(\Rightarrow\)x chia hết cho 5
x - 18 chia hết cho 6
18 chia hết cho 6
\(\Rightarrow\)x chia hết cho 6
x + 21 chia hết cho 7
21 chia hết cho 7
\(\Rightarrow\)x chia hết cho 7
\(\Rightarrow\)x \(\in\)BC ( 5;6;7 )
BC ( 5;6;7 ) = {0 ; 210 ; 420 ; 630 ; 840 ; ... }
Vì x \(\in\)BC( 5;6;7 ) và 500 < x < 700\(\Rightarrow\)x = 630
3n + 9 ⋮ n + 2
3n + 6 + 3 ⋮ n + 2
3.(n + 2) + 3 ⋮ n + 2
3 ⋮ n + 2
n + 2 \(\in\) Ư(3) = {-3; -1; 1; 3}
n \(\in\) {-5; -3; -1; 1}
n \(\in\) {1}
Ta có: 99 = 9 x 11
Chia hết cho 9 thì 2 + 0 + 1 + 5 + x + y = 8 + x + y chia hết cho 9
=> x + y = 1 hoặc x + y = 10
Chia hết cho 11 thì (2 + 1 + x) - (0 + 5 + y ) = - 2 + x - y chia hết cho 11
=> x - y = 2 hoặc x - y = 13
Ta thấy: x + y = 1 và x - y = 13 đều không xảy ra nên chọn: x + y = 10 và x - y = 2
=> x = (10 + 2) : 2 = 6 và y = (10 - 2) : 2 = 4
Vậy: x = 6 và y = 4 để 201564 chia hết cho 99