Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2=6y^2+1\) là số lẻ nên đặt \(x=2k+1\left(k\in N\right)\), ta có:
\(\left(2k+1\right)^2=6y^2+1\Rightarrow4k^2+4k+1=6y^2+1\Rightarrow4k^2+4k=6y^2\)
\(\Rightarrow2k\left(k+1\right)=3y^2\Rightarrow3y^2⋮2\Rightarrow y⋮2\Rightarrow y=2\) (vì y là số nguyên tố)
Thay y=2 vào đẳng thức ban đầu ta được: \(x^2=6.2^2+1=25\Rightarrow x=5\)
Vậy \(\left(x;y\right)=\left(5;2\right)\)
\(p=3\Rightarrow2p^2+1=19\)
Nhẩm nhẩm một chút là ra đó bạn
Cái này lớp 6 chứ
x^2-1=2y^2
<=>(x-1)(x+1)=2y^2=y.2y
+)x-1=2=>x=3
X+1=y^2=>y^2=4=>y=2
+)x-1=y=>x=y+1
X+1=2y=>y+1+1=2y=>y=2
=>x=2+1=3
Vậy (x,y)=(3;2)
x2-12y2=1 <=> (x-1)(x+1)=12y2=>x-1 thuộc các giá trị 1,2,3,4,6,12,y,y2
kết quả : ko có giá trị tm
* Xét p = 2 thì \(2^p+p^2=2^2+2^2=8\)(loại, không là số nguyên tố)
* Xét p = 3 thì \(2^p+p^2=2^3+3^2=17\)(là số nguyên tố)
* Xét p > 3 thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)⋮3\)(Do p lẻ nên \(2^p+1⋮3\)và p không chia hết cho 3 nên\(p^2-1⋮3\))
Lại có \(2^p+p^2>2^3+3^2=17>3\)nên không là số nguyên tố
Vậy p = 3 thì 2p + p2 là số nguyên tố
Note: trường hợp p > 3 còn có một cách nữa là sử dụng đồng dư
p là số nguyên tố lớn hơn 3 thì \(2^p\equiv2\left(mod3\right)\Rightarrow2^p\)chia 3 dư 2
Mặt khác p là số nguyên tố lẻ hên \(p^2\)chia 3 dư 1 suy ra \(2^p+p^2⋮3\)
Done!