Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét p = 2 thì \(2^p+p^2=2^2+2^2=8\)(loại, không là số nguyên tố)
* Xét p = 3 thì \(2^p+p^2=2^3+3^2=17\)(là số nguyên tố)
* Xét p > 3 thì \(2^p+p^2=\left(2^p+1\right)+\left(p^2-1\right)⋮3\)(Do p lẻ nên \(2^p+1⋮3\)và p không chia hết cho 3 nên\(p^2-1⋮3\))
Lại có \(2^p+p^2>2^3+3^2=17>3\)nên không là số nguyên tố
Vậy p = 3 thì 2p + p2 là số nguyên tố
Note: trường hợp p > 3 còn có một cách nữa là sử dụng đồng dư
p là số nguyên tố lớn hơn 3 thì \(2^p\equiv2\left(mod3\right)\Rightarrow2^p\)chia 3 dư 2
Mặt khác p là số nguyên tố lẻ hên \(p^2\)chia 3 dư 1 suy ra \(2^p+p^2⋮3\)
Done!
\(p=3\Rightarrow2p^2+1=19\)
Nhẩm nhẩm một chút là ra đó bạn
Cái này lớp 6 chứ
Tìm số nguyên tố p để 4p^2+1 và 6p^2+1 cũng là số nguyên tố? | Yahoo Hỏi & Đáp
Bạn tham khảo
p2p2 là số chính phương nên p2p2 chia 7 dư 0,1,2 hoặc 4
- Nếu p2⋮7p2⋮7 thì p⋮7⇒p=7p⋮7⇒p=7 , thay vào thỏa mãn
-Nếu p2p2 chia 7 dư 1 thì 3p2+43p2+4 ⋮7⇒⋮7⇒ trái với đề bài
- Nếu p2p2 chia 7 dư 2 3p2+1⋮7⇒3p2+1⋮7⇒ vô lí
-Nếu p2p2 chia 7 dư 4 2p2−1⋮7⇒2p2−1⋮7⇒ vô lí
Vậy p=7
Bài 1) +Với n = 2, ta có 22 + 22 = 4 + 4 = 8, là hợp số, loại
+Với n = 3, ta có 23 + 32 = 8 + 9 = 17, là số nguyên tố, chọn
+Với n > 3, do n nguyên tố nên n lẻ => n = 2k+1 ( k thuộc N*)
=> 2n = 22k+1 = 22k . 2 = (2k)2 . 2, do 2 không chia hết cho 3 => 2k không chia hết cho => (2k)2 không chia hết cho 3
Mà (2k)2 là số chính phương nên (2k)2 chia 3 dư 1 => (2k)2 . 2 chia 3 dư 2.
Mặt khác n2 không chia hết cho 3 do n nguyên tố > 3 nên n2 chia 3 dư 1 => 2n + n2 chia hết cho 3
Mà 1 < 3 < 2n + n2 nên 2n + n2 là hợp số, loại
Vậy n = 3
Bài 2) Do p nguyên tố không nhỏ hơn 5 nên p không chia hết cho 3 => p2 không chia hết cho 3. Mà p2 là số chính phương nên p2 chia 3 dư 1 => p2 - 1 chia hết cho 3 (1)
Do p nguyên tố không nhỏ hơn 5 nên p lẻ => p2 lẻ => p2 chia 8 dư 1 => p2 - 1 chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên p2 - 1 chia hết cho 8
Chứng tỏ p2 - 1 chia hết cho 8 với p nguyên tố không nhỏ hơn 5
* Với x=2 => 8x2+1=33 (không phải là số nguyên tố) => loại
* Với x=3 => 8x2+1=73 (là số nguyên tố) => nhận
* với x>3 là số nguyên tố => x có dạng: x=3k+1 hoặc x=3k+2
*với x=3k+1 => 8x2+1=72k2+48k+9 (là 1 số chia hết cho 3) => không thỏa
*với x=3k+2 => 8x2+1=72k2+96k+33 (là 1 số chia hết cho 3) => không thỏa
Vậy x=3