Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Đặt A=1+n2017+n2018
*Nếu: n=1 => A= 1 + 12017 + 12018 = 3 (t/m)
Do đó: A là số nguyên tố
*Nếu: n>1
1+n2017+n2018
=(n2018-n2)+(n2017-n)+(n2+n+1)
=n2.(n2016-1)+n.(n2016-1)+(n2+n).(n2016-1)+(n2+n+1)
Vì: n2016 chia hết cho n3
=> n2016-1 chia hết cho n3-1
=> n2016-1 chia hết cho (n2+n+1)
Mà: 1<n2+n+1<A=> A là số nguyên tố (k/tm đk đề bài số nguyên dương)
Vậy n=1
{x2000≥0x1000≥0{x2000≥0x1000≥0 ∀x⇒x2000+3x1000+7≥7∀x⇒x2000+3x1000+7≥7
GTNN của biểu thức là 7 khi x=0x=0
Chắc người ra đề nghĩ rằng x2000+3.x1000+7=(x1000+32)2+194≥194x2000+3.x1000+7=(x1000+32)2+194≥194
Nhưng rất tiếc dấu "=" không xảy ra
A = n2. ( n2013 - 1) + n.(n2013 - 1) + ( n2 + n + 1)
Áp dụng hằng đẳng thức an - bn = (a - b). ( an-1 + an-2.b + an-3.b2 + ...+a.bn-2 + bn-1)
Ta có: n2013 - 1 = (n3)671 - 1 = (n3 - 1). C (đặt C là đa thức của n) = (n - 1).(n2 + n + 1). C
=> n2013 - 1 chia hết cho n2 + n + 1
=> n2; ( n2013 - 1); n.(n2013 - 1) ; ( n2 + n + 1) đều chia hết n2 + n + 1
=> A chia hết cho n2 + n + 1 hay n2 + n + 1 là 1 ước của A
Để A là số nguyên tố <=> n2 + n + 1 = 1 hoặc A = n2 + n + 1
+) Nếu n2 + n + 1 = 1 <=> n2 + n = 0 <=> n (n + 1) = 0 <=> n = 0 Vì n là số tự nhiên => A = 1 không là số nguyên tố => Loại
+) Nếu n2 + n + 1 = n2015 + n2014 + 1 <=> n.(n + 1) = n2014.( n + 1) <=> n.(n +1). (1 - n2013) = 0
<=> n = 0 hoặc n2013 = 1 <=> n = 0 hoặc n = 1 Vì n là số tự nhiên; n = 0 loại
Vậy với n = 1 thì A .............
A = n2. ( n2013 - 1) + n.(n2013 - 1) + ( n2 + n + 1)
Ta có: n2013 - 1 = (n3)671 - 1 = (n3 - 1). C (đặt C là đa thức của n) = (n - 1).(n2 + n + 1). C
=> n2013 - 1 chia hết cho n2 + n + 1
=> n2; ( n2013 - 1); n.(n2013 - 1) ; ( n2 + n + 1) đều chia hết n2 + n + 1
=> A chia hết cho n2 + n + 1 hay n2 + n + 1 là 1 ước của A
Để A là số nguyên tố <=> n2 + n + 1 = 1 hoặc A = n2 + n + 1
+) Nếu n2 + n + 1 = 1 <=> n2 + n = 0 <=> n (n + 1) = 0 <=> n = 0 Vì n là số tự nhiên => A = 1 không là số nguyên tố => Loại
+) Nếu n2 + n + 1 = n2015 + n2014 + 1 <=> n.(n + 1) = n2014.( n + 1) <=> n.(n +1). (1 - n2013) = 0
<=> n = 0 hoặc n2013 = 1 <=> n = 0 hoặc n = 1 Vì n là số tự nhiên; n = 0 loại
Vậy với n = 1 thì A .............
xem lại đề đi bn ơi, t nghĩ phải là tìm số nguyên tố p chứ ?
uk mk vt thiếu