minh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của minh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

* Nếu x lẻ mà y >0 => x^y lẻ => x^y+1=z là chẵn mà z là snt => z=2

=> x^y+1=2=> x^y=1 => x=1 (vô lý vì x là số nguyên tố) => x lẻ (sai)

*Nếu x chẵn mà x là số nguyên tố => x=2 => 2^y+1=z

+) y=2 => 2^2+1=z => z=5 (t/m)

+)y>2 mà y là snt => y lẻ => y=2k+1 => z= 2^(2k+1)+1 =4^k.2 +1

Ta có :4 chia 3 dư 1 => 4^k chia 3 dư 1 => 4^k.2 chia 3 dư 2=> z chia hết cho 3 

                                                                                                 mà z>2^2 +1>3

=>z o là snt => y>2 (sai).

Vậy x=2,y=2,z=5

* Đáp án : p = 5

* Giải thích các bước giải :          

Trường hợp 1 :  p chẵn 

Vì p là số nguyên tố chẵn nên nó chỉ có thể là 2, nhưng 2 không thể là tổng 2 số nguyên tố vì 2 là số nguyên tố nhỏ nhất . 

⇒ p không tồn tại

Trường hợp 2 :  p lẻ

Giả sử p = m + n ( m,n là số nguyên tố ). Mà p lẻ ⇒  trong m và n có 1 lẻ, 1 chẵn

Nếu m là số lẻ, n là số chẵn ⇒  n = 2 ⇒ p = m+2 ⇒ m = p-2 (1)

Tương tự, p = q - r ( q,r là số nguyên tố ).Vì p là số lẻ ⇒  trong q và r có 1 lẻ, 1 chẵn

Xét : q chẵn ⇒  q = 2 ⇒  p = 2 - r < 0 ( loại ) 

⇒  q là số lẻ , r là số chẵn ⇒  r = 2 ⇒  p = q - 2 ⇒  q = p+2 (2)

Từ (1) , (2) ; ta thấy  p - 2 ; p ; p + 2 là 3 số nguyên tố lẻ (3) 

+ Nếu p < 5 ⇒ p - 2 < 3 ⇒  p - 2 không thể là số nguyên tố lẻ

+ Nếu p = 5 ⇒ (3) thỏa mãn ⇒  p = 5 .

+ Nếu p > 5 ⇒ p - 2 ; p ; p + 2 đều lớn hơn 3

+ Nếu p - 2 : 3 dư 1 thì p chia hết cho 3 ⇒  p không phải số nguyên tố ( loại ) 

+ Nếu p-2 chia 3 dư 2 thì p+2 chia hết cho 3 ---> p+2 ko phải số nguyên tố ( loại ) 

⇒ p chỉ có thể là : 5

Vậy p = 5. 

A = n2. ( n2013 - 1) + n.(n2013 - 1) + ( n+ n + 1)

Ta có: n2013 - 1 = (n3)671 - 1 = (n3 - 1). C  (đặt C là đa thức của n) = (n - 1).(n2 + n + 1). C

=> n2013 - 1 chia hết cho n+ n + 1

=>  n2;  ( n2013 - 1);  n.(n2013 - 1) ; ( n+ n + 1) đều chia hết n2 + n + 1 

=> A chia hết cho n+ n + 1 hay n+ n + 1 là 1 ước của A

Để A là số nguyên tố <=> n2 + n + 1 = 1 hoặc A = n2 + n + 1

+) Nếu n+ n + 1 = 1 <=> n+ n = 0 <=> n (n + 1) = 0 <=> n = 0 Vì n là số tự nhiên => A = 1 không là số nguyên tố => Loại

+) Nếu n+ n + 1 = n2015 + n2014 + 1 <=> n.(n + 1) = n2014.( n + 1) <=> n.(n +1). (1 - n2013) = 0 

<=> n = 0 hoặc n2013 = 1 <=> n = 0 hoặc n = 1 Vì n là số tự nhiên; n = 0 loại

Vậy với n = 1 thì A .............

Mình ko bít làm nha bạn

Gọi UCLN của 7n+10 và 5n+7 là d
7n+10 chia hết cho d => 5(7n+10) chia hết cho d
                                 hay 35n+50 chia hết cho d
5n+7 chia hết cho d=> 7(5n+7) chia hết cho d
                                 hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d 
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d
1 chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau