K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

m=1;n=4

m=2;n=3

m=3;n=2

m=4;n=1

28 tháng 10 2017
Ghi cụ thể cách giải cho mình được không ạ?
12 tháng 8 2018

do mk ko là dân toán nên cx không chắc là đúng, sai đâu mog mn bỏ qua

\(m^3+n^3+15mn=125\)

<=>  \(m^3+n^3-125+15mn=0\)

<=>  \(\left(m+n\right)^3-3mn\left(m+n\right)-5^3+15mn=0\)

<=>  \(\left(m+n-5\right)\left[\left(m+n\right)^2+5\left(m+n\right)+5^2\right]-3mn\left(m+n-5\right)=0\)

<=>  \(\left(m+n-5\right)\left(m^2+n^2+5m+5n-mn+25\right)=0\)

TH1:  \(m+n-5=0\)

<=>  \(m+n=5\)

bạn làm tiếp nhé

TH2:  \(m^2+n^2-mn+5\left(m+n\right)+25=0\)

Áp dụng AM-GM ta có:

\(m^2+n^2-mn\ge2\sqrt{m^2.n^2}-mn=2mn-mn=mn\)

Khi đó: 

 \(m^2+n^2-mn+5\left(m+n\right)+25\)

\(\ge mn+5\left(m+n\right)+25\)

Do m,n là các số nguyên dương nên:   \(mn+5\left(m+n\right)+25\ge25\)

=> trường hợp này vô lí

15 tháng 11 2019

Đặt \(n^4+n^3+1=a^2\)

\(\Leftrightarrow64n^4+64n^3+64=\left(8a\right)^2\)

\(\Leftrightarrow\left(8n^2+4n-1\right)^2-16n^2+8n+16n^2+63=\left(8a\right)^2\)

\(\Leftrightarrow\left(8n^2+4n-1\right)^2+8n+63=\left(8a\right)^2\)

\(\Rightarrow\left(8a\right)^2>\left(8n^2+4n-1\right)^2\)

\(\Rightarrow\left(8a\right)^2\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow\left(8n^2+4n-1\right)^2+8n+63\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow\left(8n^2+4n\right)^2-2\left(8n^2+4n\right)+1+8n+63\ge\left(8n^2+4n\right)^2\)

\(\Rightarrow16n^2\le64\)

\(\Rightarrow n^2\le4\Rightarrow n\in\left\{1;2\right\}\) vì m nguyên dương.

Vậy ....

17 tháng 5 2020

666666666666666666666666666666666666667777777777777777777777777788888888888888888888899999999999999999999999999944444444444444444444445555555555555555555523243435356666356467578556475786896897896756745342111111111111111111111122222222222222222223333333333333333333333333333333333344444454444444444444555555555555556666666666666666666666777777777777777777777778888888888888899999999999999101010101010101010101010101001010010100101001010010100000000000000000000000000000000000000000000001111111111111111111111000000000000000010101010

9 tháng 2 2019

Làm thử theo cách cổ truyền vậy -.-

Ta có : \(n^2+n+1=\left(m^2+m-3\right)\left(m^2-m+5\right)\)

\(\Leftrightarrow n^2+n+1=m^4+m^2+8m-15\)

\(\Leftrightarrow n^2+n+16-m^4-m^2-8m=0\)

Coi pt trên là pt bậc 2 ẩn n

Ta có : \(\Delta=4m^4+4m^2+32m-63\)

Pt có nghiệm nguyên khi \(\Delta\)là 1 số chính phương

Ta có \(\Delta=4m^4+4m^2+32m-63=\left(2m^2+2\right)^2-4\left(m-4\right)^2-3< \left(2m^2+2\right)^2\)

Giả sử m > 2 thì\(\Delta=\left(2m^2+1\right)^2+32\left(m-2\right)>\left(2m^2+1\right)^2\forall m>2\)

Khi đó  \(\left(2m^2+1\right)^2< \Delta< \left(2m^2+2\right)^2\)

Như vậy \(\Delta\)không phải số chính phương (Vì giữa 2 số chính phương liên tiếp ko còn scp nào nữa)

Nên điều giả sử là sai .

Tức là\(m\le2\)

Mà \(m\inℕ^∗\)

\(\Rightarrow m\in\left\{1;2\right\}\)

*Với m = 1 thì pt ban đầu trở thành

\(n^2+n+1=\left(1+1-3\right)\left(1-1+5\right)\)

\(\Leftrightarrow n^2+n+1=-5\)

\(\Leftrightarrow\left(n+\frac{1}{2}\right)^2=-\frac{23}{4}\)

Pt vô nghiệm

*Với m = 2 thì pt ban đầu trở thành

\(n^2+n+1=\left(2^2+2-3\right)\left(2^2-2+5\right)\)

\(\Leftrightarrow n^2+n+1=21\)

\(\Leftrightarrow n^2+n-20=0\)

\(\Leftrightarrow\left(n-4\right)\left(n+5\right)=0\)

\(\Leftrightarrow n=4\left(Do\text{ }n\inℕ^∗\right)\)

Vậy pt ban đầu có nghiệm nguyên dương duy nhất (m;n) = (2;4)

Giúp : Cho \(\Delta\)ABC nhọn nội tiếp (O) , D là điểm trên cung BC không chứa A . Dựng hình bình hành ADCE . Gọi H , K là trực tâm của tam giác ABC ,  ACE ; P , Q là hình chiếu vuông góc của K trên các đường thẳng BC , AB và I là giao EK , AC

CMR: a,P ; I ; Q thẳng hàng

          b, đường thẳng PQ đi qua trung điểm HK 

6 tháng 9 2020

Bạn vào TKHĐ mình xem cho tiện nha

6 tháng 9 2020

@huybip5cc . Không có bạn ơi !!