Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai trả lời đc mk cho 3
có hội nha
bài tập tết của mk đó
nl mk sắp phải nộp rồi
Vì \(3^n+1\)là số chính phương nên:
\(3^n+1=k^2\)
\(\Leftrightarrow3^n=\left(k+1\right)\left(k-1\right)\)
Đặt: \(\hept{\begin{cases}3^p=k+1\\3^q=k-1\end{cases}}\left(p>q\right)\)
Suy ra: \(p+q=n\)
Và \(3^p-3^q=2\)
\(\Leftrightarrow3^q\left(3^{p-q}-1\right)=1\cdot\left(3-1\right)\)
\(\hept{\begin{cases}q=0\\p=1\end{cases}\Rightarrow}n=p+q=1\)
Vậy với n=1 thì \(3^n+1\)là scp
Gọi số chình phương đó là: b2
ta có: 2014+ n2=b2
2014= b2-n2
2014=(b+n).(b-n)
nếu n là số lẻ thì n2 là số lẻ nên b2 là số lẻ
nếu n là số chẵn thì n2 là số chẵn nên b2 là số chẵn
vậy (b+n) và (b-n) khi chia cho 2 thì đồng dư (1)
ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )
nên không có số tự nhiên n để 2014 + n2 là số chính phương.
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
Xét 2 trường hợp :
a) n là số nguyên
n^2 + 2014 = k^2 (k nguyên)
=> k^2 - n^2 = 2014
=> (k + n)(k - n) = 2014
Ta biết nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn.
Vậy không có n thuộc Z thỏa mãn ĐK đề bài.
b) n là số thực
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44)
=> n^2 = k^2 - 2014 => n = +/- căn (k^2 - 2014)
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = +/- căn (k^2 - 2014) với k nguyên, k > 44)
--------------------------------------...
(Nếu đề bài nêu rõ n nguyên thì bài này vô nghiệm)
https://olm.vn/hoi-dap/question/984695.html
áp dụng bài đó rồi giải bài của bn
gọi số chính phương đó là b2
ta có n2 +2014=b2
2014=b2-n2
2014=(b+n).(b-n)
nếu n là số lẻ thì n2là số lẻ nên b2là số lẻ
nếu n là số chẵn thì n2là số chẵn nên b2là số chẵn
vậy b+n và b-n khi chia cho 2 là đồng dư
ta có 2014=1.2014=2.1007=19.106
nên không có số tự nhiên n để n2+2014 là số chính phương