K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2018

ai trả lời đc mk cho 3

có hội nha

bài tập tết của mk đó

nl mk sắp phải nộp rồi

20 tháng 2 2018

bài nào ấy nhỉ

24 tháng 3 2019

Vì \(3^n+1\)là số chính phương nên:

\(3^n+1=k^2\)

\(\Leftrightarrow3^n=\left(k+1\right)\left(k-1\right)\)

Đặt: \(\hept{\begin{cases}3^p=k+1\\3^q=k-1\end{cases}}\left(p>q\right)\)

Suy ra: \(p+q=n\)

Và \(3^p-3^q=2\)

\(\Leftrightarrow3^q\left(3^{p-q}-1\right)=1\cdot\left(3-1\right)\)

\(\hept{\begin{cases}q=0\\p=1\end{cases}\Rightarrow}n=p+q=1\)

Vậy với n=1 thì \(3^n+1\)là scp

26 tháng 1 2015

  Gọi số chình phương đó là: b2

  ta có: 2014+ n2=b2

             2014= b2-n2

           2014=(b+n).(b-n)

   nếu n là số lẻ thì n2 là số lẻ nên b2 là số lẻ

   nếu n là số chẵn thì n2 là số chẵn nên b2 là số chẵn

   vậy (b+n) và (b-n) khi chia cho 2 thì đồng dư   (1)

 ta có: 2014=1.2014=2.1007=19.106 ( mẫu thuẫn với (1) )

  nên không có số tự nhiên n để 2014 + n2 là số chính phương.

 

8 tháng 1 2017

cac ban co cach giai khac ko

11 tháng 4 2015

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

20 tháng 4 2017

n=3

3^2=9

9+2016= 2025=45^2

30 tháng 11 2016

 Xét 2 trường hợp : 
a) n là số nguyên 
n^2 + 2014 = k^2 (k nguyên) 
=> k^2 - n^2 = 2014 
=> (k + n)(k - n) = 2014 
Ta biết nếu k và n nguyên thì k+n và k-n sẽ cùng chẵn hoặc cùng lẻ.Ở đây tích của chúng là 2014 nên chúng phải cùng chẵn.Nhưng 2014 không chia hết cho 4 nên không thể là tích của 2 số chẵn. 
Vậy không có n thuộc Z thỏa mãn ĐK đề bài. 

b) n là số thực 
n^2 +2014 = k^2 (k nguyên) (ĐK có nghiệm k > 44) 
=> n^2 = k^2 - 2014 => n = +/- căn (k^2 - 2014) 
Vậy có vô số số n thuộc R thỏa mãn ĐK đề bài (n = +/- căn (k^2 - 2014) với k nguyên, k > 44) 
--------------------------------------... 
(Nếu đề bài nêu rõ n nguyên thì bài này vô nghiệm)

https://olm.vn/hoi-dap/question/984695.html

áp dụng bài đó rồi giải bài của bn

7 tháng 7 2017

umk thank bạn :))

4 tháng 4 2016

gọi số chính phương đó là b2

ta có  n+2014=b2 

         2014=b2-n2

            2014=(b+n).(b-n)

nếu n là số lẻ thì n2là số lẻ nên b2là số lẻ 

nếu n là số chẵn thì n2là số chẵn nên b2là số chẵn 

vậy b+n và b-n  khi chia cho 2 là đồng dư

ta có 2014=1.2014=2.1007=19.106

nên không có số tự nhiên n để n2+2014 là số chính phương