Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(3x-1⋮y\) và \(3y+1⋮x\)nên \(\left(3x-1\right)\left(3y+1\right)⋮xy\)
\(\Rightarrow9xy+3x+3y+1⋮xy\)
Mà \(9xy⋮xy\)
\(\Rightarrow\frac{3x}{y}+3+y\frac{1}{y}⋮x\)
Do vai trò của x , y như nhau , nên giả sử
\(\Rightarrow\frac{x}{y}\le1\)
\(\Rightarrow\frac{3x}{y}+3+\frac{1}{y}< 7\)
\(\Rightarrow1< x< 7\)
\(\Rightarrow x=2;3;4;5;6\)
Thay x vào 3x + 1 \(⋮\)y và 3y-1\(⋮x\)
Do 3x+1 \(⋮\)y và 3y+1\(⋮\) x
nên (3x+1)(3y+1) \(⋮\)xy
=>9xy+3x+3y+1 \(⋮\)xy
mà 9xy \(⋮\)xy
=>3x+3y+1 \(⋮\)xy
=>\(\frac{3x}{y}\) + 3 +y\(\frac{1}{y}\) chia hết cho x
Do vai trò của x,y như nhau nên giả sử
=>\(\frac{x}{y}\le1\)
=>\(\frac{3x}{y}\le3\)
y>1 =>\(\frac{1}{y}< 1\)
=>\(\frac{3x}{y}+3+\frac{1}{y}< 7\)
=>1<x <7
=>x = 2,3,4,5,6
Thay x vào 3x+1\(⋮\) y và 3y+1\(⋮\) x
Xl bn nha
Chỗ
Coi phương trình trên là pt bậc 2 ẩn x tham số y
Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)
\(=y^2-2y+1-4y-12\)
\(=y^2-6y-11\)
Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)
Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương
Đặt \(\Delta=k^2\left(k\inℕ\right)\)
\(\Leftrightarrow y^2-6y-11=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)
\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)
Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên
Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)
bài trên đang còn: đồng thời ( 3y+1)\(⋮\)y