Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(|x-2|-3)(5+|x|)=0
<=>|x-2|-3=0 hoặc 5+|x|=0
*)Xét |x-2|-3=0 <=>|x-2|=3
=>x-2=±3
Với x-2=3 =>x=5
Với x-2=-3 =>x=-1
*)Xét 5+|x|=0
=>|x|=-5 (mà \(\left|x\right|\ge0>-5\) với mọi x)
=>vô nghiệm
(2x-1)2=1-2x
<=>4x2-4x+1=1-2x
<=>4x2-2x=0
<=>2x(2x-1)=0
<=>x=0 hoặc x=\(\frac{1}{2}\)
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó:ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AC//BD
Ta có hình vẽ sau:
A B C M D N E
a) Xét ΔABM và ΔCDM có:
MB = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> ΔABM = ΔCDM (c.g.c)(đpcm)
b) Vì ΔABM = ΔCDM (ý a)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng)
mà 2 góc này lại ở vị trí so le trong nên
=> AB // CD (đpcm)
c) +)Vì ΔAB // CD (ý b)
=> \(\widehat{NBM}=\widehat{EDM}\) (so le trong)
Xét ΔMNB và ΔMED có:
\(\widehat{EMD}=\widehat{NMB}\) (đối đỉnh)
MB = MD (gt)
\(\widehat{NBM}=\widehat{EDM}\) (cm trên)
=> ΔMNB = ΔMED (g.c.g)
=> NB = ED(2 cạnh tương ứng) (1)
+) CM tương tự ta có:
ΔMEA = ΔMNC(g.c.g)
=> EA = NC (2 cạnh tương ứng) (2)
Từ (1) và (2)
=> EA = ED => E là trung điểm của AD (đpcm)
á, sao đã tl rồi thế này hả
Do 3x+1 \(⋮\)y và 3y+1\(⋮\) x
nên (3x+1)(3y+1) \(⋮\)xy
=>9xy+3x+3y+1 \(⋮\)xy
mà 9xy \(⋮\)xy
=>3x+3y+1 \(⋮\)xy
=>\(\frac{3x}{y}\) + 3 +y\(\frac{1}{y}\) chia hết cho x
Do vai trò của x,y như nhau nên giả sử
=>\(\frac{x}{y}\le1\)
=>\(\frac{3x}{y}\le3\)
y>1 =>\(\frac{1}{y}< 1\)
=>\(\frac{3x}{y}+3+\frac{1}{y}< 7\)
=>1<x <7
=>x = 2,3,4,5,6
Thay x vào 3x+1\(⋮\) y và 3y+1\(⋮\) x
Xl bn nha
Chỗ