Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y xác định \(\Leftrightarrow2x^2-5x+2\ne0\Leftrightarrow\left(x-2\right)\left(2x-1\right)\ne0\Leftrightarrow\left\{{}\begin{matrix}x-2\ne0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne2\\x\ne\frac{1}{2}\end{matrix}\right.\). Vậy tập xác định D = R / { 2; 1/2}
b) y xác định \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ne0\\2x+4\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ge-2\end{matrix}\right.\).
Vậy tập xác định D = \([-2;+\infty)/1\)
y xác định \(\Leftrightarrow x^2-3x+m-1\ne0\forall x\in R\)
suy ra phương trình x2 - 3x + m - 1 = 0 vô nghiệm
\(\Rightarrow\Delta=9-4\left(m-1\right)< 0\Leftrightarrow9-4m+4< 0\Leftrightarrow m>\frac{13}{4}\)
\(\Rightarrow m\in\left(\frac{13}{4};+\infty\right)\)
a) \(Y=\frac{\sqrt{3-2x}}{\sqrt{1-x}}+\frac{\sqrt{2x+1}}{x}\)
\(\Rightarrow\left\{{}\begin{matrix}3-2x\ge0\\1-x>0\\2x+1\ge0\\x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3}{2}\\x< 1\\x\ge\frac{-1}{2}\\x\ne0\end{matrix}\right.\)
TXĐ: \([-\frac{1}{2};\frac{3}{2}]\backslash\left\{0\right\}\)
b) \(Y=\frac{\sqrt{3x+5}}{x-2}+\frac{\sqrt{2x+3}}{\sqrt{4-x}}\)
\(\left\{{}\begin{matrix}3x+5\ge0\\x-2\ne0\\2x+3\ge0\\4-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{3}\\x\ne2\\x\ge-\frac{3}{2}\\x< 4\end{matrix}\right.\)
TXĐ: \([-\frac{5}{3};4)\backslash\left\{2\right\}\)
a, ĐKXD:
x^3+x^2-5x-2 khác 0
(x-2)(x^2+3x+1) khác 0
x khác 2 ( x^2+3x+1 luôn khác 0)
D= R \ {2}
a) Đk \(3-4x\ne0\Leftrightarrow x\ne\frac{3}{4}\)
TXĐ: \(D=R\backslash\left\{\frac{3}{4}\right\}\)