Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ:
a/ \(\left\{{}\begin{matrix}x\ge1\\4-x^2\ge0\\x\ne2\\x\ne-3\end{matrix}\right.\) \(\Rightarrow1\le x< 2\)
b/ \(\left\{{}\begin{matrix}2-x\ge0\\x^2-5x+4\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne1\\x\ne5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le2\\x\ne1\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}2-3x\ge0\\1+2x>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\le\frac{2}{3}\\x>-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le\frac{2}{3}\)
1) a)
\(y=\frac{\sqrt{4-x}+\sqrt{x+3}}{\left(\left|x\right|-1\right)\sqrt{x^2-2x+1}}\\ ĐK:\left[{}\begin{matrix}4-x\ge0\\x+3\ge0\\\left|x\right|-1\ne0\\x^2-2x+1>0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\le4\\x\ge-3\\x\ne\pm1\\\left(x-1\right)^2>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le4\\x\ge-3\\x\ne\pm1\\x\ne1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}-3\le x\le4\\x\ne\pm1\end{matrix}\right.\\ TXĐ:D=\left[-3;4\right]\backslash\left\{-1;1\right\}\)
\(b.\\ y=\frac{\sqrt{x^2-6x+9}+\sqrt{\left|x\right|-2}}{\left(x^4-4x^2+3\right)\left(\sqrt{x}-2\right)}\\ ĐK:\left\{{}\begin{matrix}x^2-6x+9\ge0\\\left|x\right|-2\ge0\\x^4-4x^2+3\ne0\\\left\{{}\begin{matrix}x\ge0\\\sqrt{x}-2\ne0\end{matrix}\right.\end{matrix}\right. \)
(tương tự câu a)
2)
\(y=f\left(x\right)=\frac{x^4-6x^2+2}{\left|x\right|-1}\\ ĐK:\left|x\right|-1\ne0\Leftrightarrow x\ne\pm1\\ TXĐ:D=R\backslash\left\{-1;1\right\}\\ \forall x\in D\Rightarrow-x\in D\)
Ta có: f(-x)=\(\frac{\left(-x\right)^4-6\left(-x\right)^2+2}{\left|-x\right|-1}=\frac{x^4-6x^2+2}{\left|x\right|-1}\)
=f(x)
⇒Hàm số đã cho là hàm số chẵn
a) Để biểu thức xác định thì \(3x^2+2\ne0\forall x\in R\)
vậy với mọi x thì biểu thức trên luôn xác định.
b) Để .......
\(\left\{{}\begin{matrix}2x+5\ge0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{5}{2}\\x>1\end{matrix}\right.\)
vậy biểu thức trên xác định khi x>1.
c) Để ..........
\(\left\{{}\begin{matrix}x+1\ge0\\x^2-2x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left\{{}\begin{matrix}x\ne0\\x\ne2\end{matrix}\right.\end{matrix}\right.\)
Vậy để biểu thức xđ khi \(x\in[-1;+\infty)\backslash\left\{0;2\right\}\)
d) Để ........
\(\left\{{}\begin{matrix}2x+3\ge0\\5-x\ge\\2-\sqrt{5-x}\ne0\end{matrix}\right.0\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{2}\\x\le5\\x\ne1\end{matrix}\right.\)
Vậy để btxđ khi \(x\in\left[-\frac{3}{2};5\right]\backslash\left\{1\right\}\)
e) Để ......
\(\left\{{}\begin{matrix}x+2\ge0\\3-2x\ge0\\\left|x\right|-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\le\\\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\end{matrix}\right.\frac{3}{2}\)
Vậy để btxđ khi ....