Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) miền xác định của \(f\) là \(D=R\backslash\left\{\pm1\right\}\)
\(\text{∀}x\in D\), ta có: \(-x\in D\) và \(f\left(-x\right)=\frac{2x^4-x^2+3}{x^2-2}=f\left(x\right)\)
\(\Rightarrow\) \(f\) là hàm số chẵn
b) Ta có: \(\left|2x+1\right|-\left|2x-1\right|\ne0\)\(\Leftrightarrow\left|2x+1\right|\ne\left|2x-1\right|\)
\(\Leftrightarrow\left(2x+1\right)^2\ne\left(2x-1\right)^2\)
\(\Leftrightarrow x\ne0\)
\(\Rightarrow\) Miền xác định của \(f\) là \(D=R\backslash\left\{0\right\}\)
khi đó \(\text{∀}x\in D\) thì \(-x\in D\) và :
\(f\left(-x\right)=\frac{\left|-2x+1\right|+\left|-2x-1\right|}{\left|-2x+1\right|-\left|-2x-1\right|}\)\(=\frac{\left|2x-1\right|+\left|2x+1\right|}{\left|2x-1\right|-\left|2x+1\right|}\)\(=-\frac{\left|2x+1\right|+\left|2x-1\right|}{\left|2x+1\right|-\left|2x-1\right|}\)
\(=-f\left(x\right)\Rightarrow f\) là hàm số lẻ
a) \(D=(0;+\infty)\backslash\left\{1\right\}\)
b) \(D=[2;+\infty)\)
a) \(\dfrac{2}{x+1}\) xác định với x≠-1, \(\sqrt{x+3}\) xác định với x ≥ -3
Tập xác định của y = là:
D = {x ∈ R/ x + 1 ≠ 0 và x + 3 ≥ 0} = [-3, +∞)\{-1}
Có thể viết cách khác: D = [-3, -1] ∪ (-1, +∞)
b) Tập xác định
D = {x ∈ R/ 2 -3x ≥ 0} ∩ {x ∈ R/ 1-2x ≥ 0}
= [-∞, 2323 ]∩(-∞, 1212) = (-∞, 1212)
c) Tập xác định là:
D = [1, +∞) ∪ (-∞,1) = R
Một hàm số cho bởi công thức y = f(x) mà không chú thích gì về tập các định thì ta quy ước rằng tập xác định của hàm số ấy là tập hợp tất cả x ∈ R sao cho biểu thức f(x) có nghĩa.
Hàm số \(y=\dfrac{x+1}{\left(x+1\right)\left(x^2+2\right)}\) có tập xác định là D = R/{-1}, còn hàm số \(y=\dfrac{1}{x^2+2}\). Do đó hai hàm số khác nhau (mặc dù rằng với mọi x ≠ -1 giá trị của hàm số luôn bằng nhau khi x lấy cùng một giá trị.
a) Tập xác định của y = f(x) = |x| là D = R.
∀x ∈ R => -x ∈ R
f(- x) = |- x| = |x| = f(x)
Vậy hàm số y = |x| là hàm số chẵn.
b) Tập xác định của
y = f(x) = (x + 2)2 là R.
x ∈ R => -x ∈ R
f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)
f(- x) ≠ - f(x) = - x2 – 4x - 4
Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.
c) D = R, x ∈ D => -x ∈ D
f(– x) = (– x3) + (– x) = - (x3 + x) = – f(x)
Vậy hàm số đã cho là hàm số lẻ.
d) Hàm số không chẵn cũng không lẻ.
a)TXĐ D=[-2:2]
\(\forall x\in D\Rightarrow-x\in D\)
f(-x)=\(\sqrt{2-\left(-x\right)}\) +\(\sqrt{2-x}\) =\(\sqrt{2+x}+\sqrt{2-x}=f\left(x\right)\)
Hàm số đồng biến
Câu b) c) giống rồi tự xử nha
d)\(Đk:x^2-4x+4\ge0\Leftrightarrow\left(x-2\right)^2\ge0\)
TXĐ D=R
\(\forall x\in D\Rightarrow-x\in D\)
\(f\left(-x\right)=\sqrt[]{\left(-x\right)^2+4x+4}+\left|2-x\right|=\sqrt{x^2+4x+4}+\left|2-x\right|\ne\mp f\left(x\right)\)
Hàm số không chẵn không lẻ
ĐKXĐ: 1+x>=0 và 1-x>=0
=>x>=-1 và x<=1
=>-1<=x<=1
\(f\left(-x\right)=\dfrac{\sqrt{1-x}-\sqrt{1+x}}{\left|-x+2\right|-\left|-x-2\right|}=-f\left(x\right)\)
=>f(x) là hàm số lẻ
Hàm xác định trên R
\(f\left(-x\right)=\dfrac{\left|-x+1\right|-\left|-x-1\right|}{\left|-x+2\right|+\left|-x-2\right|}=\dfrac{\left|x-1\right|-\left|x+1\right|}{\left|x+2\right|+\left|x-2\right|}=-f\left(x\right)\)
Hàm đã cho là hàm lẻ