Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n^2+2n=a^2(a thuộc N )
n^2+2n+1-1=a^2
(n+1)^2-1=a^2
(n+1)^2-a^2=1
(n+1-a)(n+1+a)=1
Mà a,n thuộc N => a+n+1 thuộc N
=> n+1-a=1 và n+1+a=1
=>n-a=0 và n+a=0
=> n=a=0
Vậy n=0
1/ A= 71+72+73+74+75+76\(⋮\)57
Ta có : 71+72+73+74+75+76= (71+72+73)+(74+75+76)
=7x(1+7+72)+74x(1+7+72)
=7x57+74x57
=57x(7+74)\(⋮\)57
4n+17
Vậy A \(⋮\)57
Phần 2 thiếu đề bài
3/ 4n+17\(⋮\)2n+3
=>4n+17-2x(2n+3)\(⋮\) 2n+3
=>4n+17-4n-6\(⋮\) 2n+3
=>11\(⋮\)2n+3
=>2n+3 \(\varepsilon\)Ư(11)
mà Ư(11) ={1;11}
Vì 2n+3 là số tự nhiên =>2n+3 =11
=>2n=11-3
=>2n=8
=>n=8 :2
=> n=4
Vậy n=4 thì ...
4/ 9n+17 \(⋮\)3n+2
=>9n+17-3x(3n+2)\(⋮\)3n+2
=>9n+17-9n-6\(⋮\)3n+2
=>11\(⋮\)3n+2
=>3n+2 \(\varepsilon\)Ư(11)
mà Ư(11)={1;11}
Vì 3n+2 là số tự nhiên => 3n+2>2
=>3n+2 =11
=>3n=11-2
=>3n=9
=>n=9:3
=>n=3
Vậy n=3 thì ...
Vì n2+2n+12 là SC nên ta có \(n^2+2n+12=m^2\) (m là số tự nhiên)
\(=>\left(n^2+2n+1\right)+11=m^2=>\left(n+1\right)^2+11=m^2\)
\(=>m^2-\left(n+1\right)^2=11=>\left[m-\left(n+1\right)\right].\left[m+\left(n+1\right)\right]=11\)
\(=>\left(m-n-1\right).\left(m+n+1\right)=11=1.11=11.1\)
vì m,n là các số tự nhiên nên \(m-n-1< m+n+1\)
=>\(\left(m-n-1\right).\left(m+n+1\right)=1.11\)
=> \(\hept{\begin{cases}m-n-1=1\\m+n+1=11\end{cases}=>\hept{\begin{cases}m-n=2\\m+n=10\end{cases}}}\)
Cộng vế với vế:
\(\left(m-n\right)+\left(m+n\right)=2+10=12=>2m=12=>m=6\)
Từ đó suy ra n=4
Vậy n=4 thì n2+2n+12 là SCP
Đặt \(n^2+2n+12=a^2\Leftrightarrow\left(n+1\right)^{^2}+11=a^2\Leftrightarrow\left(n-a+1\right)\left(n+a+1\right)=-11\)
Do n và s là số tự nhien nên xét ước 11 rồi tìm n và a sau , sau đó kết luan n = 4
Bài 1:
a) Vì 10n luôn luôn có cs tận cùng là 0 (luôn luôn 10;100;1000;... đều trừ 1 thì đều chia hết cho 9)
suy ra 10n-1 chia hết cho 9
b) Vì 10n luôn luôn có cs tận cùng là 0
ta có 10n sẽ có tổng các cs của nó là 1
Vậy 10n+8 sẽ có tổng các cs là 9
Mà 9 chia hết cho 9 nên 10n+8 sẽ chia hết cho 9.
Ta có:n^2+2n+6:n+2
n(n+2)+6:n+2
Ma n+2:n+2 nen n(n+2):n+2
Suy ra 6:n+2
n+2 thuộc U(6)=1,2,3,6
n thuộc 0,1,4
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
nhớ chọn câu trả lời của mình nhe
Nếu n=0,suy ra A=0(thỏa mãn)
Nếu n=1 suy rs A=0(thỏa mãn)
Nếu n>1,ta có
A=n.(n^3-2.n^2+3n-2)
A=n.[n.(n^2-2n+3)-2]
A=n.[n.(n-1)^2+2.(n-1)]
A=n.(n-1).[n.(n-1)+2]
Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2 (tự chứng minh)
Suy ra A không phải là số chính phương với n>1
Vậy n={0;1}
Mk sửa lại cái đề nek: Tìn số tự nhiên sao cho n2 + 2n + 12 là số chính phương.
Để \(n^2+2n+12\) là số chính phương
\(\Rightarrow n^2+2n+12=t^2\left(t\inℤ^∗\right)\)
\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)
\(\Rightarrow t^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)
Dễ thấy: \(t+n+1>t-n-1\forall t,n\inℤ^∗\)
\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}}\) ( thỏa mãn )
Vậy \(n=4\) thì \(n^2+2n+12\) là số chính phương.
đề của mk ko có 12 đâu