Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p ∈ N)
Tương tự: A = 31q + 28 (q ∈ N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q ≥≥ 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 93 + 28 = 121
Cách 2
Gọi số tự nhiên nhỏ nhất cần tìm là a
Do a chia 29 dư 5; chia 31 dư 28
=> a = 29.m + 5 = 31.n + 28 (m;n∈N)(m;n∈N)
=> 29.m = 31.n + 23
=> 29.m = 29.n + 2.n + 23
=> 29.m - 29.n = 2.n + 23
=> 29.(m - n) = 2.n + 23
⇒2.n+23⋮29⇒2.n+23⋮29
Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất
Mà 2.n + 23 là số lẻ => 2.n + 23 = 29
=> 2.n = 29 - 23
=> 2.n = 6
=> n = 6 : 2 = 3
=> a = 31.3 + 28 = 121
Vậy số nhỏ nhất cần tìm là 121
Vì số đó chia 60 được số dư là 31 => Số đó có dạng 60K+31
Xét tổng trên ta có: 60K+31=30.2K+30+1
=> 60K+31= 30.(2K+1)+1
Vi 30.(2K+1) chia hết cho 2 ( do 30 chia hết cho 2) => 3.(2K+1) có dạng tổng quát chung là 2K
=> 60K+31=2K+1
Vậy nếu đem số đó chia cho 2 thì được số dư là 1
Gọi số cần tìm là \(x\) ( \(x\in\)N; 100 ≤ \(x\) ≤ 999)
Theo bài ra ta có \(x\) có dạng: \(x\) = 75k + k ( k \(\in\) N)
⇒ \(x\) = 76k ⇒ k = \(x:76\) ⇒ \(\dfrac{100}{76}\) ≤ k ≤ \(\dfrac{999}{76}\)
⇒ k \(\in\) { 2; 3; 4;...;13}
Để \(x\) lớn nhất thì k phải lớn nhất ⇒ k = 13 ⇒ \(x\) = 76 \(\times\) 13 = 988
Vậy số thỏa mãn đề bài là 988
Thử lại ta có 988 : 75 = 13 dư 13 (ok)
b, Gọi số chia là \(x\) ( \(x\) \(\in\) N; \(x\) > 9)
Theo bài ra ta có: 86 - 9 ⋮ \(x\) ⇒ 77 ⋮ \(x\)
⇒ \(x\) \(\in\) Ư(77) = { 1; 7; 11}
vì \(x\) > 9 ⇒ \(x\) = 11
Vậy số chia là 11
Thương là: (86 - 9 ) : 11 = 7
Kết luận số chia là 11; thương là 7
Thử lại ta có: 86 : 11 = 7 dư 9 (ok)
Nếu chia hết cho 29 thì chia cho 31 dư 28 - 5 = 23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi số đó là a :
Ta có a : 29 dư 5 suy ra ( a - 5 ) : 29
Ta có a : 31 dư 28 suy ra ( a - 28 ) : 31
Khi đó a sẽ là Bội chung của 29 và 31
Phân tích thành số nguyên tố , ta có :
29 = 29 x 1
31 = 31 x 1
Thừa số chung là : 1
Thừa số riêng là : 29 và 31
Suy ra bội chung nhỏ nhất của 29 và 31 là :
1 x 29 x 31 = 899
Từ số 899 ta tìm được các bội khác bằng cách lấy 899 + 899 và tiếp tục như vậy
Ta có : { 899 ; 1798 ; 2697 ; ....... }
số đó là 121 nhá bạn ơi