K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

\(x+\left(-23\right)=\left(-100\right)+77\\ x-23=-23\\ x=-23+23\\ x=0\)

Vậy \(x=0\).

19 tháng 5 2017

\(x+(-23)=(-100)+77 \)

\(=x+(-23)=-23\)

\(x=-23-23 \)

x=-46

18 tháng 5 2017

a) \(x=-100\)

b) \(x=-120\)

20 tháng 5 2017

a, \(x=\left(-1\right)+\left(-99\right)\)

\(x=-100\)

Vậy \(x=-100\)

b, \(x=\left(-105\right)+\left(-15\right)\)

\(x=-120\)

Vậy \(x=-120\)

20 tháng 5 2017

a) Để \(1983\left(x-7\right)>0\) thì \(x-7>0\).

\(\Rightarrow x>0+7\Rightarrow x>7\)

\(\Rightarrow x\in\left\{8;9;10;11;12;...\right\}\)

b) Để \(\left(-2010\right)\left(x+3\right)>0\) thì \(x+3< 0\).

\(\Rightarrow x< 0-3\Rightarrow x< \left(-3\right)\)

\(\Rightarrow x\in\left\{-4;-5;-6;-7;-8;...\right\}\)

19 tháng 5 2017

a) Để \(4\left(x-8\right)< 0\) thì \(x-8< 0\).

\(\Rightarrow x< 0+8\Rightarrow x< 8\)

\(\Rightarrow x\in\left\{7;6;5;4;3\right\}\)

b) Để \(-3\left(x-2\right)< 0\) thì \(x-2>0\)

\(\Rightarrow x>0+2\Rightarrow x>2\)

\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)

27 tháng 12 2017

a) Để 4(x−8)<04(x−8)<0 thì x−8<0x−8<0.

⇒x<0+8⇒x<8⇒x<0+8⇒x<8

⇒x∈{7;6;5;4;3}⇒x∈{7;6;5;4;3}

b) Để −3(x−2)<0−3(x−2)<0 thì x−2>0x−2>0

⇒x>0+2⇒x>2⇒x>0+2⇒x>2

⇒x∈{3;4;5;6;7}

18 tháng 5 2017

a)Bội chung

b)BCNN

9 tháng 11 2017

a)Bội chung

b)BCNN

5 tháng 12 2019

Bài 1:

\(a.\left|x\right|+\left|6\right|=\left|-27\right|\\ \Leftrightarrow\left|x\right|+6=27\\ \Leftrightarrow\left|x\right|=27-6=21\\ \Leftrightarrow\left\{{}\begin{matrix}x=-21\\x=21\end{matrix}\right.\)

25 tháng 12 2019

a. |x||x| + |+6||+6| = |27|

x + 6 = 27

x = 27 - 6

x = 21

Vậy x = 21

b. |5||−5| . |x||x| = |20|

5 . x = 20

x = 20 : 5

x 4

Vậy x = 4

c. |x| = |−17| và x > 0

|x| = 17

Vì |x| = 17

nên x = -17 hoặc 17

mà x > 0 => x = 17

Vậy x = 17 hoặc x = -17

d. |x||x| = |23||23| và x < 0

|x| = 23

Vì |x| = 23

nên x = 23 hoặc -23

mà x < 0 => x = -23

e. 12 |x||x| < 15

Vì 12 |x| < 15

nên x = {12; 13; 14}

Vậy x € {12; 13; 14}

f. |x| > 3

|x| > 3

nên x = -2; -1; 0; 1; 2;

Vậy x € {-2; -1; 1; 2}

a. A=

{

xZ|3<x7}

A = {-2; -1; 0; 1; 2; 3; 4; 5; 6; 7}

b. B={xZ|3|x|<7}

B = {3; 4; 5; 6}

c. C={xZ||x|>5}

C = {6; 7; 8; 9; ...}

16 tháng 4 2017

a) |a| = 5 => a = 5 hay a = -5

b) |a| = 0 => a = 0

c) |a| = -3 không tìm được a nào như thế vì |a| không thể là số âm.

d) |a| = |-5| = 5 => a = 5 hay a = -5

e) -11|a| = -22 => |a| = (-22):(-11) = 2 => a = 2 hay a = -2

16 tháng 4 2017

a) |a| = 5 => a = 5 hay a = -5

b) |a| = 0 => a = 0

c) |a| = -3 không tìm được a nào như thế vì |a| không thể là số âm.

d) |a| = |-5| = 5 => a = 5 hay a = -5

e) -11|a| = -22 => |a| = (-22):(-11) = 2 => a = 2 hay a = -2

28 tháng 1 2020

chờ mình nha !

28 tháng 1 2020

(x+x+x+x+x+...+x)+(1+3+5+...+99)=0

50x + 2500 = 0

50x=0- 2500

50x =-2500

x=-2500:50

x=-50 

Vậy x=-50

16 tháng 4 2017

Sách Giáo Khoa

Cho x ∈ Z, so sánh: (-5) . x với 0.

Bài giải:

Nếu x < 0 thì (-5) . x > 0.

Nếu x = 0 thì (-5) . x = 0.

Nếu x > 0 thì (-5) . x < 0.

- Nếu x < 0 (hay x là số nguyên âm) thì: (-5).x > 0

Ví dụ với x = -2 (-5).x = (-5).(-2) = 5.2 = 10 > 0

- Nếu x = 0 thì: (-5).x = 0

- Nếu x > 0 (hay x là số nguyên âm) thì: (-5).x < 0

Ví dụ với x = 3 (-5).x = (-5).3 = -(|-5|.|3|) = -(5.3) = -15 < 0

20 tháng 1 2018

Đặt A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 )

+ Xét x = 1 ; x = 2 ; x = 3 ; x = 4 thì ta luôn có A = 0 ( loại )

Xét x < 1 ta có :

x - 1 < 0

x - 2 < 0

x - 3 < 0

x - 4 < 0

=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0       ( chọn )

Xét x > 4 ta có :

x - 1 > 0

x - 2 > 0

x - 3 > 0

x - 4 > 0

=> A = ( x - 1 ) ( x - 2 ) ( x - 3 ) ( x - 4 ) > 0       ( nhận )

Để A > 0 thì x < 1 hoặc x > 4

4 < x < 1

=> x = 3 ; 2

22 tháng 1 2018

Ta có : 

Với \(x< 1\) thì \(x-1,x-2,x-3,x-4\) đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Với \(1\le x< 2\) thì \(x-1\ge0;x-2,x-3,x-4\)  đều nhỏ hơn 0 nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)

Với \(2\le x< 3\) thì \(x-1\ge0;x-2\ge0,x-3< 0,x-4< 0\) nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Với \(3\le x< 4\) thì \(x-1\ge0;x-2\ge0,x-3\ge0,x-4< 0\) nên 

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)

Với \(x\ge4\) thì  \(x-1\ge0;x-2\ge0,x-3\ge0,x-4\ge0\)

nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\)

Vậy nên \(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)>0\Leftrightarrow x< 1\) hoặc \(2< x< 3\) hoặc x > 4.