Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=2.\frac{32}{99}=\frac{64}{99}\)
Bài 2:
a) \(2.4^x-18=110\)
\(\Leftrightarrow2.4^x=128\)
\(\Leftrightarrow4^x=64\)
\(\Leftrightarrow4^x=4^3\Leftrightarrow x=3\)
Vậy x = 3
b) \(\left(\frac{3}{2}x-1\right)^5=1\)
\(\Leftrightarrow\frac{3}{2}x-1=1\)
\(\Leftrightarrow\frac{3}{2}x=2\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
a) 4/3.5 + 3/5.7 + .... + 4/97.99
= 4( 1/3.5 +1/5.7 + ... + 1/97.99 )
= 4 . 1/2 . 2 ( 1/3.5 +1/5.7 + ... + 1/97.99 )
= 4/2 ( 2/3.5 + 2/5.7 + .... + 2/97.99 )
= 2 ( 5-3/3.5 + 7-5/5.7 + ..... + 99-97/97.99 )
= 2 (5/3.5 - 3/3.5 + 7/5.7 - 5/5.7 + .... + 99/97.99 - 97/97.99 )
= 2 ( 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/97 - 1/99 )
= 2 ( 1/3 -1/99 )
= 2 (33/99 - 1/99 )
= 2 . 32/99
= 32.2/99
=64/99
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)
\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)
\(A=\frac{x}{2x+1}\)
Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)
\(\frac{2}{3.5}+\frac{2}{5.7}+.................+\frac{2}{97.99}\)
=\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+..................+\frac{1}{97}-\frac{1}{99}\)
=\(\frac{1}{3}-\frac{1}{99}\)
=\(\frac{32}{99}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}\)
\(=\frac{32}{99}\)
A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)
\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)
\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)
X=16
\(a.\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)
\(\Rightarrow99x=49.\left(2x+1\right)\)
\(\Rightarrow99x=98x+49\)
\(\Rightarrow x=49\)
Vậy : \(x=49\)
\(b.\)
\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)
Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)
\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)
\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)
\(\Rightarrow-3^{x+1}=-9^{1006}\)
\(\Rightarrow-3^{x+1}=-3^{2012}\)
\(\Rightarrow x+1=2012\)
\(\Rightarrow x=2012-1\)
\(\Rightarrow x=2011\)
Vậy : \(x=2011\)
Bài này khá ez thôi:
a) bạn sửa lại đề rồi làm theo cách làm của b,c,d nhé
b) Ta có: \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|\ge0\left(\forall x\right)\)
\(\Rightarrow5x\ge0\Rightarrow x\ge0\) khi đó:
\(PT\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)
\(\Leftrightarrow x=5\)
c,d tương tự nhé
c,\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}+\right|+...+\left|x+\frac{1}{97.99}\right|\ge0\forall x\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)Khi đó:
\(x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)
\(\Rightarrow49x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=50x\)
\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{49}{99}\)
\(\frac{x-2}{3}+\frac{x-2}{3.5}+\frac{x-2}{5.7}+...+\frac{x-2}{97.99}=\frac{-49}{99}\)
<=>\(\left(x-2\right)\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{49}{99}=-\frac{49}{99}\)
<=>x-2=-1
<=>x=1