Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
Ta có: n+3⋮n+1
ta có n+1⋮n+1n+1⋮n+1
mà n+3⋮n+1n+3⋮n+1
\Rightarrow n+3-\left(n+1\right)⋮n+1⇒n+3−(n+1)⋮n+1
\Rightarrow n+3-n-2⇒n+3−n−2 ⋮n+1⋮n+1
\Rightarrow⇒ 22 ⋮n+1⋮n+1
\Rightarrow n+1\in\text{Ư}_{\left(2\right)}=\text{ }\left\{1;2\right\}⇒n+1∈Ư
(2)= {1;2}
nếu n+1=1\Rightarrow n=0n+1=1⇒n=0 ( thỏa mãn )
nếu n+1=2\Rightarrow n+1n+1=2⇒n+1 ( thỏa mãn )
vậy n\in\text{ }\left\{0;1\right\}n∈ {0;1}
b)Ta có:
4n+ 3⋮⋮ 2n+ 1.
Ta có: 2n+ 1⋮⋮ 2n+ 1.
=> 2( 2n+ 1)⋮⋮ 2n+ 1.
=> 4n+ 2⋮⋮ 2n+ 1.
Mà 4n+ 3⋮⋮ 2n+ 1.
=>( 4n+ 3)-( 4n+ 2)⋮⋮ 2n+ 1.
=> 4n+ 3- 4n- 2⋮⋮ 2n+ 1.
=> 1⋮⋮ 2n+ 1.
=> n= 1.
Vậy n= 1.
Tick cho mình nha!
Ta có: 3n+2=3n-3+2+3
Vì (n-1) nên 3(n-1) ⋮ (n-1)
Do đó(3n+2) ⋮ (n-1) khi 5 ⋮ (n-1)
=>(n-1)ϵ Ư(5)={-1;-5;1;5}
=>n ϵ {2;6} vì n-1=1=>n=2
n-1=5=>n=6
Vậy n={2;6}
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
với dạng bài này ta phải tách số bị chia thành tổng hoặc hiệu 2 số trong đó có một số chia hết cho số chia
câu a) 2n +5 = 2n -1 +6
vì 2n -1 chia hết cho 2n -1 nên để 2n +5 chia hết cho 2n -1 khi 6 chia hết cho 2n -1
suy ra 2n -1 là ước của 6
vì 2n -1 là số lẻ nên 2n -1 \(\in\) {1;3}
n=1; 2
2n + 5 chia hết cho n + 1
n +1 chia hết cho n + 1
=> 2( n +1 ) chia hết cho n + 1
=> 2n + 2 chia hết cho n + 1
=> 2n + 5 - 2n - 2 chia hết cho n+1
=. 3 chia hết cho n+ 1
=> n + 1 thuộc ước của 3
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
ta có:\(\frac{2n+7}{n+1}\)=\(\frac{2\left(n+1\right)+6}{n+1}\)=\(2+\frac{6}{n+1}\)
Để 2+\(\frac{6}{n+1}\)thuộc Z
=>n+1 thuộc Ư(6)
=>n+1 thuộc {1;-1;2;-2;3;-3;6;-6}
n thuộc {0;-2;1;-3;2;-4;5;-7}
vậy n thuộc {0;-2;1;-3;2;-4;5;-7}
Ta có \(2n+7⋮n+1\Rightarrow2\left(n+1\right)+5⋮n+1\)
Vì \(2\left(n+1\right)⋮n+1\) nên \(5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Thử từng ước của 5 rồi tìm n thỏa mãn