Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,Ta có: \(n^2+n+1⋮n+1\)
\(\Rightarrow\left(n^2+n\right)+1⋮n+1\)
\(\Rightarrow n\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\) (vì n(n+1)đã chia hết cho n+1)
\(\Rightarrow n+1=1\Rightarrow n=0\)
a/ a+5 chia hết n+2
a+2+3 chia hết n+2
a+2 chia hết n+2, a+2+3 chia hết n+2 nên 3 chia hết n+2 => n+2 thuộc ước của 3
n+2={1;-1;3;-3} => tự tìm n
b/ 2n+10 chia hết n+1
hay 2(n+1) +8 chia hết n+1
2(n+1)+8 chia hết n+1, 2(n+1) chia hết n+1 nên 8 chia hết n+1. tương tự tự làm
c/ n^2+4 chia hết n+1
n+1 chia hết n+1
=> (n+1).n chia hết n+1
n^2+n chia hết n+1 mà n^2+4 cũng chia hết n+1
=> n^2+n-(n^2+4) chia hết n+1
n^2+n-n^2-4 chia hết n+1
=> n-4 chia hết n+1
n+1-5 chia hết n+1. mà n+1 chia hết n+1, n+1-5 chia hết n+1 nên 5 chia hết n+1
=> n+1 thuộc ước của 5. tự làm
a) Ta có : n+5 = (n+2)+3
Mà n+2 chia hết cho n+2 nên 3 chia hết cho n+2. Suy ra n+2 thuộc ước của 3
ta có bảng sau:(bạn tự kẻ bảng nha)
n+2 ...........................
n ................................
những dấu chấm ở dòng n+2 thì bạn viết các ước của 3 nha (nhớ viết cả số âm nữa nha)
những dấu chấm ở dòng n thì có lẽ bạn tự viết được phải ko ?
bạn nhớ tic cho mình với nha giờ mình bận rồi bạn tự làm hai câu còn lại nha
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
Ta có:5n+6 chia hết cho 3n-2 =>3(5n+6) chia hết cho 3n-2 hay15n+18 chia hết cho 3n-2(1)
3n-2=5(3n-2)=15n-10(2)
Từ (1) và (2) =>[(15n+8)-(15n-10)] chia hết cho 3n-2
18 chia hết cho 3n-2
(3n-2) có thể bằng :9,2,3,6,1,18
Nếu 3n-2=9 thì n=(9+2):3 loại vì 11 không chia hết cho 3
Nếu 3n-2=2 thì n=(2+2):3 loại vì 4 không chia hết cho 3
Nếu 3n-2=3 thì n=(3+2):3 loại vì 5 không chia hết cho 3
Nếu 3n-2=6 thì n=(6+2):3 loại vì 8 không chia hết cho 3
Nếu 3n-2=1 thì n=(1+2):3 chọn vì 3 chia hết cho 3
Nếu 3n-2=18 thì n=(18+2):3 loại vì 2 không chia hết cho 3
Vậy n=1
n2+4 chia hết cho n-2
Ta có:n2+4=n.n+4.n=n(4+n)
n-1=n.n-n.1=n(n-1)
n2+4 chia hết cho n-1 hay n(4+n)chia hết cho n(n-1)
=4+n chia hết cho n-1
=> n chỉ có thể là 2
a)
\(\left(2n+1\right)^3=27\)
\(\left(2n+1\right)^3=3^3\)
\(2n+1=3\)
\(2n=3+1\)
\(2n=4\)
\(n=4\div2\)
\(n=2\)
b)
\(\left(n+2\right)^2=\left(n+2\right)^4\)
\(\left(n+2\right)^4-\left(n+2\right)^2=0\)
\(\left(n+2\right)^2\cdot\left(n+2\right)^2-\left(n+2\right)^2\cdot1=0\)
\(\left(n+2\right)^2\cdot\left[\left(n+2\right)^2-1\right]=0\)
\(\Rightarrow\left(n+2\right)^2=0hoạc\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0\)
\(n+2=0\)
\(n=0+2\)
\(n=2\)
\(\left(n+2\right)^2-1=0\)
\(\left(n+2\right)^2=0+1\)
\(\left(n+2\right)^2=1\)
\(n+2=1\)
\(n=1+2\)
\(n=3\)
Vậy \(n\in\left\{2;3\right\}\)