\(\frac{1}{n+3}\);
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2015

umk đây này

Phân số đã cho có dạng: a/2+a+n với a=1,2,3,...,2004.

UCLN(a;2+a+n)=1 do đó a;2+a+n nguyên tố cùng nhau. Do vậy 2+n là số nguyên tố với n nhỏ nhất

Do đó 2+n=2003 (Vì 2003 là số nguyên tố)

Vậy n=2001

10 tháng 6 2015

bài này hình như có bạn hỏi rùi, n = 2001

17 tháng 7 2016

Ta có:

1/n + 3 = 1 / 1 + (n + 2) 

2/n + 4 = 2 / 2 + (n + 2)

3/n + 5 = 3 / 3 + (n + 2)

....

2001/n + 2003 = 2001 / 2001 + (n + 2)

2002/n + 2004 = 2002 / 2002 + (n + 2)

Ta thấy các phân số trên đều có dạng a/a + (n + 2)

Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau

=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau

Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003

=> n = 2003 - 2 = 2001

Vậy n = 2001

nhớ k nha

17 tháng 7 2016

Ta có:

1/n + 3 = 1 / 1 + (n + 2) 

2/n + 4 = 2 / 2 + (n + 2)

3/n + 5 = 3 / 3 + (n + 2)

....

2001/n + 2003 = 2001 / 2001 + (n + 2)

2002/n + 2004 = 2002 / 2002 + (n + 2)

Ta thấy các phân số trên đều có dạng a/a + (n + 2)

Để mỗi phân số đều tối giản thì a và n + 2 phải nguyên tố cùng nhau

=> n + 2 và 1; 2; 3; ...; 2001; 2002 nguyên tố cùng nhau

Mà n nhỏ nhất => n + 2 nhỏ nhất => n + 2 = 2003

=> n = 2003 - 2 = 2001

Vậy n = 2001

6 tháng 8 2016

Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)

Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)

và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)

=>n - 2009 = 1 =>n = 2010

Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)

Vậy giá trị lớn nhất của A là 2011 khi n=2010

6 tháng 8 2016

Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)

Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)

Ta có bảng sau:

  n + 3  9 -9  3  -3  1  -1
     n  6 -12  0  -6  -2  -4
22 tháng 5 2016

2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm

2006 = 2.17.59
Để q chia hết cho 2006 thì n(n+1)...(n+9) chia hết cho 2006
Với n<50 thì n, (n+1), ... (n+9) < 59 nên ko thoả mãn.
Với n=50: thì n+1 = 51 chia hết cho 17; n+9=59 chia hết cho 59
suy ra n(n+1)...(n+9) chia hết cho 2006

* Ta sẽ chứng minh n=50 là số tự nhiên nhỏ nhất thoả mãn.
- Đặt S = 1/50 + 1/51 + ... + 1/59
1/50 + 1/51 + ... + 1/58 = A/B (trong đó B ko chia hết 59)
suy ra: S = A/B + 1/59 = (59A + B)/59B = p/q
hay (59A + B)q = 59Bp hay Bq = 59(Bp - Aq)
Do B ko chia hết 59 suy ra q chia hết 59.

- Đặt 1/50 + 1/52 + ... + 1/58 = C/D ta cũng có D ko chia hết cho 17
Chứng minh tương tự suy ra q chia hết cho 59, 17, 2
suy ra (đpcm

10 tháng 2 2018

Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!

a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )

Ta có: 2n + 3 chia hết cho d

=> 2 ( 2n + 3 ) chia hết cho d

=> 4n + 6 chia hết cho d

Mà: 4n + 1 chia hết cho d

=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d

=> 5 chia hết cho d

=> d thuộc Ư ( 5 )

Giả sử phân số không tối giản:

=> 2n + 3 chia hết cho 5

=> 2n + 3 + 5 chia hết cho 5

=> 2n + 8 chia hết cho 5

=> 2 ( n + 4 ) chia hết cho 5

Vì ƯCLN ( 2; 5 ) = 1

=> n + 4 chia hết cho 5

=> n + 4 = 5k ( k thuộc N* )

=> n = 5k - 4

Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

10 tháng 2 2018

b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 ) 

Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )

          7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3  chia hết cho d ( 2 )

Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d

=> ( 1 ) - ( 2 ) chia hết cho d

=> 11 chia hết cho d

=> d thuộc Ư ( 11 )

Giả sử phân số không tối giản:

=> 7n + 1 chia hết cho 11

=> 7n + 1+ 55 chia hết cho 11

=> 7n + 56 chia hết cho 11

=> 7 ( n + 8 ) chia hết cho 11

Vì ƯCLN ( 7; 11 ) = 1

=> n + 8 chia hết cho 11

=> n + 8 = 11k ( k thuộc N* )

=> n = 11k - 8

Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.

Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^

9 tháng 7 2017

Đặt d=ƯCLN(12n+1;30n+2)

=>12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d; 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d; 60n+4 chia hết cho d

=>(60n+5)-(60n+4) chia hết cho d

=>1 chia hết cho d

=>d=1

=>phân số \(\frac{12n+1}{30n+2}\) là phân số tối giản 

8 tháng 7 2017

Bài 1:

\(\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^2}-\frac{5^{10}.7^3-25^3.49^2}{\left(125.7\right)^3+5^9.14^3}=\frac{2^{12}.3^5-\left(2^2\right)^6.\left(3^2\right)^2}{2^{12}.3^6+\left(2^3\right)^4.3^2}-\frac{5^{10}.7^3-\left(5^2\right)^3.\left(7^2\right)^2}{\left(5^3.7\right)^3+5^9.2^3.7^3}\)

\(=\frac{2^{12}.3^5-2^{12}.3^4}{2^{12}.3^6+2^{12}.3^2}-\frac{5^{10}.7^3-5^6.7^4}{5^9.7^3+5^9.2^3.7^3}=\frac{2^{12}.3^4\left(3-1\right)}{2^{12}.3^2\left(3^4+1\right)}-\frac{5^6.7^3\left(5^4-7\right)}{5^9.7^3\left(1+2^3\right)}=\frac{3^2.2}{82}-\frac{618}{5^3.9}\)

\(=\frac{9}{41}-\frac{206}{375}=\)