Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)3^2+2^2=5^2 => n=2
b) 3^2+2^2=5^2 => n=2
nó là duy nhất
c/m duy nhất: giờ thi trác nhiệm thôi khỏi cần chưng minh
Đặt tổng \(2^n+3^n+4^n=T\)
- Nếu n = 1 thì T = 9 thỏa mãn.
- Xét trường hợp n > 1 hay n≥2 thì 2n+4n chia hết cho 4, mà 3n
chia cho 4 dư 1 hoặc -1 tương ứng n chẵn hoặc lẻ.
Mà một số chính phương chia cho 4 thì dư 0 hoặc 1, do đó T phải chia 4 dư 1 nên 3n
chia 4 dư 1 suy ra n chẵn
Với n chẵn: 2 chia 3 dư -1 nên 2n
chia 3 dư 1, 4 chia 3 dư 1 nên 4n chia 3 dư 1, 3n
chia hết cho 3. Do đó T chia 3 dư 2 (vô lí) Vì một số chính phương thì chia 3 dư 0 hoặc 1.
Vậy n = 1 là số nguyên dương duy nhất thỏa mãn bài toán.
1000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Vì n2 + 2n + 12 là số chính phương nên đặt n2 + 2n + 12 = k2 (k thuộc N)
Suy ra (n2 + 2n + 1) + 11 = k2
Suy ra k2 – (n+1)2 = 11
Suy ra (k+n+1)(k-n-1) = 11
Nhận xét thấy k+n+1 > k-n-1 và chúng là những số nguyên dương, nên ta có thể viết : (k+n+1)(k-n-1) = 11.1
+ Với k+n+1 = 11 thì k = 6
Thay vào ta có : k – n - 1 = 1
6 - n - 1 =1 Suy ra n = 4
Đặt \(n^2+2n+18=a^2\left(a\inℕ;n\inℕ\right)\)
\(\Leftrightarrow a^2-\left(n+1\right)^2=17\)
\(\Leftrightarrow\left(a+n+1\right)\left(a-n-1\right)=17\)
Vì \(a\inℕ;n\inℕ\) nên \(\left(a+n+1\right)>\left(a-n-1\right)\); 17 là số nguyên tố
\(\Rightarrow a+n+1=17\)(*)
và a - n - 1 = 1 hay a = n + 2
Thay a = n +2 vào (*) tính được n = 7
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) = (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12
Ta có: A = 28 + 211 + 2n = 28.(1 + 23 + 2n-8) = (23)2.(1 + 2.22.1 + 24 +2n-8 - 24) = (23)2.((1 + 22)2 + 2n-8 - 24)
=> A là số chính phương <=> 2n-8=24=> n-8=4=> n=12
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath