K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

câu hỏi tương tự có đấy:

13 tháng 5 2016

Đặt \(A=\frac{n+13}{n-2}\) là phân số tối giản

\(\Rightarrow\)n+13 chia hết cho n-2(n là số tự nhiên)

Ta có:

\(\frac{n+13}{n-2}=\frac{n-2+15}{n-2}=\frac{n-2}{n-2}+\frac{15}{n-2}=1+\frac{15}{n-2}\)

Do đó n-2\(\in\)Ư(15)

Vậy Ư(15)là[1,3,5,15]

        Ta có bảng sau:

n-213515
n35717

Vậy n=3;5;7;17

13 tháng 5 2016

Trịnh Thành Công giải sai rồi

1 tháng 4 2018

De \(\frac{n+13}{n-2}\)la phan so toi gian thi n + 13 chia het n - 2

Gia su n + 13 chia het n - 2 ta co:

      n + 13 \(⋮\)n - 2 

=>  ( n + 13  - ( n -2 ) \(⋮\)n - 2

=> 15 \(⋮\)n - 2

=> n - 2\(\in\)Ư(15)

=> n - 2\(\in\)( 1 ; 3 ; 5 ; 15 )

Vay n \(\in\)( 3 ; 5 ; 7 ; 17 )

1 tháng 4 2018
  • \(\frac{n+13}{n-2}\)=\(\frac{\left(n-2\right)+15}{n-2}=\)\(1+\frac{15}{n-2}\)\(\Rightarrow\)n-2thuộcƯ(15)=(-15;-5-;-3;-1;1;3;5;15)
  • n-2-15-5-3-1+1+3+5+15
    n-13-3-1135717

    Vậy \(\frac{n+13}{n-2}\)là phân số tối giản

6 tháng 4 2017

Câu 3 : 

b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1 

=> 2n + 8 chia hết cho 2n - 1  

mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1 

=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }

=> 2n - 1 \(\in\) { 1 ,3 , 9 }

=> 2n\(\in\){ 2 , 4 ,10}

=> n\(\in\){ 1, 2 ,5 }

=> P\(\in\){ 5 , 2 , 1 }

Vì P là nguyên tố nên P\(\in\){ 5,2}

vậy n\(\in\){ 1 , 2 }

Câu 4 : 

26 tháng 2 2017

Gọi  \(ƯCLN\left(n+13;n-2\right)\in d\)

\(\Rightarrow\left(n+13\right)-\left(n-2\right)⋮d\)

\(\Rightarrow15⋮d\Rightarrow d\inƯ\left(15\right)=1;3;5;15\)

\(\Rightarrow\) Để \(\frac{n+13}{n-2}\) là phân số tối giản thì \(d=1;n+13\notin3;5;15\)

\(\Rightarrow n-2\notin3;5;15\)

\(\Leftrightarrow n+13\notin15\)

Vì  \(13\notin15\Rightarrow n⋮15\Rightarrow n+13\notin15\)

\(\Rightarrow n-2\notin15\)

Vì \(2\notin15\Rightarrow n⋮15\Rightarrow n-2\notin15\)

\(\Rightarrow n⋮15\) thì \(\frac{n+13}{n-2}\) là phân số tối giản

P/s:\(\notin\) là không chia hết nha bạn